Optimised Turbulence & Wind Speed Profiling using AO Telemetry

DOUGLAS J. LAIDLAW
Why the ELT needs a Turbulence Profile

- Performance verification.
- Optimising wide-field AO tomography.
- PSF reconstruction.
- Site monitoring.
- Instrument design.

Demonstrating the Turbulence Profile
Demonstrating the Turbulence Profile

[Diagram showing telescope pupil and turbulence profile]

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Tomographic Reconstructor

It is necessary to analytically generate tomographic reconstructors as slopes are:

- Noisy.
- Suffer from temporal convergence.
Tomographic Reconstructor

To build a synthetic covariance matrix (and therefore the tomographic reconstructor) the following parameters are iteratively fitted (over 100s of iterations!) to on-sky covariance:

- WFS optical mis-alignments e.g:
 - Shift.
 - Rotation.
 - Magnification.
- Turbulence Profile.

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Tomographic Reconstructor

To build a synthetic covariance matrix (and therefore the tomographic reconstructor) the following parameters are iteratively fitted (over 100s of iterations!!) to on-sky covariance:

- **WFS optical mis-alignments e.g:**
 - Shift.
 - Rotation.
 - Magnification.

- **Turbulence Profile.**
 - Variable.
 - Needs to be updated regularly.

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk

Recovering the Turbulence Profile

Learn and Apply algorithm (Vidal et al. 2010) used to fit on-sky slope covariance by analytically generated response functions. Technique employed known as Learn 3 Step (L3S; Martin et al. 2016).

User inputs:
• On-sky slope covariance.
• Response function altitudes.
• GS Asterism.
• L_a (fixed at altitude).

Recovering the Turbulence Profile

The ELT issue...
• 74 x 74 WFSs (4028 sub-apertures)
• 64-bit precision.
• 6 WFSs.

⇒ An ELT covariance matrix has $(48336)^2$ data points (~20GB of memory!!).
⇒ Measuring the turbulence profile at ELT scales via the covariance matrix fitting process is slow and computationally demanding.
Reducing the Scale of the Problem
Reducing the Scale of the Problem

<table>
<thead>
<tr>
<th>Covariance Map ROI</th>
<th>Fraction of Covariance Matrix (2 x WFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANARY (2 x WFS)</td>
<td>~ 1 / 3.4 x 10^5</td>
</tr>
<tr>
<td>Memory Required</td>
<td>~ 1 / 3.4 x 10^5</td>
</tr>
</tbody>
</table>

By knowing the separation vector between stars it is possible to move directly from slope-space to the covariance map ROI.

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Reducing the Scale of the Problem

Response Functions:

By approximating that slopes are the difference in phase from two middle points on opposite sides of the sub-aperture, a relation is made to the spatial covariance between sub-apertures.

\[J_x \times X_{I_1} \]

\[(Martin\ et\ al.\ 2012) \]

\[J_x \times X_{J_1} \]

\[Covariance\ Map\ Region\ of\ Interest\ (ROI) \]

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Reducing the Scale of the Problem

<table>
<thead>
<tr>
<th>Fraction of Covariance Matrix (2 x WIFs)</th>
<th>CANARY (7x7 WIFs)</th>
<th>AOF (40x40 WIFs)</th>
<th>LCT (74x74 WIFs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance Map ROI</td>
<td>Memory Required</td>
<td>Number of Cross-covariance Calculations</td>
<td>Number of Response Function Calculations</td>
</tr>
<tr>
<td>1 / 1.4x10^3</td>
<td>~ 1 / 1.4x10^3</td>
<td>~ 1 / 40</td>
<td>~ 1 / 70</td>
</tr>
<tr>
<td>1 / 1.7x10^5</td>
<td>~ 1 / 3.1x10^3</td>
<td>~ 1 / 280</td>
<td>~ 1 / 540</td>
</tr>
<tr>
<td></td>
<td>~ 1 / 1.7x10^5</td>
<td>~ 1 / 490</td>
<td>~ 1 / 920</td>
</tr>
</tbody>
</table>

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Efficiency Demonstration

To test the speed of the fitting algorithms, matrix and map ROI turbulence profiling procedures were timed on 2015 16GB MacBook Pro.

- WFS slopes simulated in SOAPY for CANARY, AOF and ELT.
- 8 response function altitudes fitted.
- 2 NGs.
Efficiency Demonstration

Turbulence Profiling Efficiency

- CANARY (7x7) ~20 s
- AOF (40x40) ~3 hours
- ELT (76x74) ~1.7 days

On my laptop!

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Performance Verification - Simulation

- WFS slopes were simulated for CANARY’s configuration in SOAPY for 4 NGs.
- 35-layer ESO profile.
- Integrated r_0: 0.1m
- L_0 at all layers: 25m
- 10,000 slope iterations at a frame rate of 150Hz.
- Simulation repeated 5 times so that a standard error on the results could be resolved.

Fitting Algorithms:
- L_0 at altitude: 25m
- Response functions fitted at 8 evenly-spaced layers from 0 to 28km

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk

Performance Verification - Simulation

Simulation’s Integrated Profile

$$G = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{C_n^2(h_i)_{\text{target}}}{C_n^2(h_i)_{\text{sim}}} \right)$$

<table>
<thead>
<tr>
<th>Target Array</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>0.38 ± 0.10</td>
</tr>
<tr>
<td>Map ROI</td>
<td>0.29 ± 0.06</td>
</tr>
</tbody>
</table>

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk
Performance Verification – On-sky

- WFS slopes were provided from CANARY, an AO testbed on the 4.2m WHT.
- Each dataset required to have 4 NGSSs, 10,000 slope iterations and a frame rate of ~150Hz.
- Corresponding turbulence profiles were observed by stereo-SCIDAR on the 2.5m INT.
- L_0 at all layers: ?
- A total of 20 CANARY datasets were analysed

Fitting Algorithms:
- L_0 at altitude: 25m
- Response functions fitted at 8 evenly-spaced layers from 0 to 28km

![Image of L2S Map ROI Turbulence Profiles and stereo-SCIDAR's Integrated Profile]

\[
G = \frac{1}{N} \sum_{i=1}^{N} \log \left(\frac{C_{\text{ex}}(h_i)_{\text{Target}}}{C_{\text{ex}}(h_i)_{\text{Ref}}} \right)
\]

<table>
<thead>
<tr>
<th>Target Array</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>1.23 ± 0.11</td>
</tr>
<tr>
<td>Map ROI</td>
<td>1.06 ± 0.12</td>
</tr>
</tbody>
</table>
1. Compared to matrices, covariance map ROIs can be calculated and generated much, much faster.
2. For turbulence profiling, fitting to covariance map ROIs is as accurate as fitting to covariance matrices.

Douglas J. Laidlaw
douglas.j.laidlaw@durham.ac.uk