AOF: first on-sky performance of the GALACSI GLAO mode

or how to close 10 loops in less than 5 minutes

Johann Kolb, on behalf of the AOF team
The Adaptive Optics Facility
AOF timeline

2005-2013: Concept, design, manufacturing, assembly

2014: System tests of GRAAL in the lab

2015: System tests of GALACSI in the lab
- Installation of GRAAL at the VLT UT4
- Installation of 1 LGS
- Combined test of GRAAL + 1 LGS

2016: Installation and test of the 4LGSF
- Installation of the DSM
- UT4 telescope re-commissioning with the DSM

2017:
- 01-02: Installation of GALACSI at the VLT UT4
- 02: Validation of the DSM performance using the GRAAL on-axis NGS mode
- 03-09: Commissioning of the GALACSI GLAO, including MUSE in Wide-Field Mode
- 10-12: Comm. of the GRAAL GLAO mode, including HAWK-I

2018:
- 01-05: Commissioning of GALACSI in Narrow-Field Mode
GALACSI

GLAO to feed the MUSE Wide-Field Mode:

- Seeing enhancer in $1 \times 1 \text{arcmin}^2$ FoV @ 750 nm
- 4 LGSs located $\approx 1 \text{arcmin}$ from the optical axis
- No optics inserted in the MUSE scientific FoV

Four 40x40 Shack-Hartmann 1 kHz LGS WFS + 1 Tip-Tilt 200 Hz NGS sensor (50-110”), all using $<1e \text{RON CCD220 from e2v}$

4LGSF return flux often 3-4 times the initial spec

Uses the 1156 actuators of the DSM (600 modes). Actuator low death rate ($<1 \text{per year}$) which anyway don’t affect performance
AOF control - GALACSI

- Science light
- LGS light
- TT NGS light
- VLT GS light

Commands

Offloads

WFS

- M1
 - Focus, Coma, 90 s
 - VLT axes
 - Tip, Tilt, 200 Hz
 - Z>3, 1 kHz
- Tip-Tilt, 1 s
- Z=5, 6, >8
- 45 s, 6, >8

- Hexapod
 - M3
 - Tip-Tilt

- Sensor

Laser

Launch

Telescope

LGS Field Selector

Jitter, 10 s

Focus, Compensator

LGS SH

Jitter, 1 kHz

Commissioning Camera

Weighting map update

Na layer tracking

Mis-reg. > CM LUT

TT CM derotation

Background Follower

Low flux freezing

Low flux freezing

Na layer tracking

LGS focalization

Focus bootstrap

Dark Follower

M1 passive support

Pointing model
GALACSI Acquisition sequence

Preset of telescope, 4LGSF, motors, RTC, MUSE
- MUSE AOF Acquisition
 - MUSE AOF acquisition
 - Preset Phase
 - 4LGSF FS Preset
 - Telescope Preset
 - Set DSM in TF mode
 - Deploy GALACSI mode
 - Disable DSM simulation on RTC
 - 4LGSF LPC Preset (set asterism)
 - AOF Preset
 - LGS WFS initial setup
 - Tip/Tilt Sensor Bootstrap
 - Tip/Tilt Sensor Camera Bootstrap
 - Sky map measurements
 - NGS Detection and Centering

NGS acquisition
- High Order Loop Closure
 - Close jitter loop
 - Close focus offload loop
 - Bootstrap High Order Control Matrix

LGS acquisition
- LGS WFS Camera Bootstrap
 - Set AODRIVEN
 - LGS Set Search Mode
 - LGS JM Search
 - LGS Apply Corrections
 - LGS Unset Search Mode
 - LGS Check Flux
 - LGS Focus bootstrap
 - LGS Skymap Measurements

Wait for 1 Act. Opt. correction

2 Act. Opt. correction

Close LGS WFS loops. Take control of telescope

Close NGS TT loop

Close auxiliary loops

50 sec
Control of the 4LGSF

4LGSF Laser Pointing Camera
4 sec exposure

GALACSI Commissioning Camera
1 sec exposure
The AOF: an Adaptive Telescope

- Pointing model
- Instrumental offsets
- Laser Pointing Camera in parallel to NGS Acquisition
- Spiral search

 Acquisition of the Lasers

- In non-Adaptive Mode, the telescope Active Optics set the position of the Scientific focus
- Focus Compensator tracks Sodium Layer
- Focus bootstrap minimizes Focus on LGS WFS
- When in Adaptive Mode, the Active Optics WFS used as Truth Sensor sends focus offsets to the Focus Compensator
- This Focus is immediately corrected by the High-Order loop and the DSM, and seen corrected by the Science instrument
- It is then slowly offloaded to the DSM Hexapod

 Focus Loop

- Average DSM commands
- Measure Truth Sensor Focus

Adaptive Telescope Loop

- Focus offload
- Offset Focus Compensator
- M1 support

- Coma offload
- High-order offload

90 sec
Displays
GLAO performance on sky #1

91% of the stars are in spec, 67% in goal

EE gain variation w.r.t. mean (%) vs.
- Star #
- Star SNR
- Star distance to center (arcsec)

EE in 0.2" spaxel

EE gain: 2.14 ± 0.09
GLAO performance on sky #2
GLAO performance on sky #3

EE gain at 747 nm

Turbulence ratio in the first km (%)
Various results:

- NGS faint-end results confirm the ones obtained in Garching: V magnitude 18.5 can be offered comfortably.
- Beyond that GALACSI can still be used in “TT-free” mode (TT from Field Stabilization at 65 Hz far away in the FoV).
- Bright LGSs → no WFSing optimization required.
- Jitter Loop keeps the LGS spots close to the WFS center.
- Insignificant Non Common Path Aberrations.
- Low sensitivity to loop gain and number of controlled modes.
- Aircraft detection (< twice a night) freezes the LGS and Jitter loops for ~10 seconds.
- When conditions are favorable (strong Ground layer), excellent performance improvement down to 500 nm.
- Atmospheric and Performance parameters estimation from RTC data available every minute.
MUSE results

http://muse-vlt.eu/blog/
To be Continued...