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ABSTRACT  

Astronomical images taken from large ground-based telescopes requires techniques as Adaptive Optics in order to 

improve their spatial resolution. In this work are presented computational results from a modified curvature sensor, the 

Tomographic Pupil Image Wavefront Sensor (TPI-WFS), which measures the turbulence of the atmosphere, expressed 

in terms of an expansion over Zernike polynomials. Convolutional Neural Networks (CNN) are presented as an 

alternative to the TPI-WFS reconstruction. This technique is a machine learning model of the family of Artificial Neural 

Networks (ANN), which are widely known for its performance as modeling and prediction technique in complex 

systems. Results obtained from the reconstruction of the networks are compared with the TPI-WFS reconstruction by 

estimating errors and optical measurements (Root Mean Square error, Mean Structural Similarity and Strehl ratio). 

In general, CNN trained as reconstructor showed slightly better performance than the conventional reconstruction in 

TPI-WFS for most of the turbulent profiles, but it made significant improvements for higher turbulent profiles that have 

the lowest r0 values.  
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1. INTRODUCTION  

Adaptive Optics (AO) is the main technique to improve the spatial resolution of large ground-based telescopes [1]. It has 

turned to provide excellent results on offering diffraction limited images in the near infrared, due to the minor effects of 

turbulence in this range.  

In the optical bands AO systems on duty today are able to achieve high success in correcting the incoming wavefront 

errors at high degrees by using Shack-Hartmann (SH) sensors, but they require very bright, and hence scarce, reference 

stars or a laser non-natural star [2]. 

In a previous work, we have proposed a modified curvature sensor, the Tomographic Pupil Image Wavefront Sensor 

(TPI-WFS), to be used instead of a classical SH sensor [3]. This new sensor has been demonstrated that it can 

successfully measure the turbulence of the atmosphere. Furthermore, it presents also some advantages. For example, it 

has better resolution than a SH sensor, it can work with low light illumination regime and it is stable when changes in the 

optical parameters are introduced. 

Artificial Neural Networks (ANN) are a type of machine learning technique, which are known for its capacity of 

modeling complex systems [4–8]. In the field of AO, techniques as ANNs have been proven to be very useful with the 

use of SH sensors as, for example, the Complex Atmospheric Reconstructor based on Machine lEarNing (CARMEN) 

[9]. This reconstructor algorithm use information from the SH sensor to estimate the atmospheric turbulence [10]. The 

improvements and characteristics of this artificial intelligence approach have been widely studied for the adaptive optics 

reconstruction [11,12]. CNN have been widely used in image recognition, language processing, etc., achieving great 

success [13]. 
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CNNs are a machine learning technique of the family of ANNs [14–16], which are widely known for its usage as a 

modeling and prediction technique in complex systems [16,17] as well as its performance in AO [18,19]. One of the best 

advantages that CNN provides is that it allows full images as inputs, since the process will involve the extraction of the 

main characteristics in each convolutional layer into feature maps that will be, later, reduced in size.  

In this work a comparison between a real time TPI-WFS restoration and a CNN reconstruction was made by 

computational simulations implemented on a Graphics Processor Unit (GPU).  

The paper will enclose the following contents. In section 2, an explanation about the techniques is presented. These 

techniques were used in this work for sensing and turbulent image reconstruction. Also, the setup of the network and its 

correspondent training is detailed in this section. In section 3, the results of the performance of both methods of 

reconstruction is shown, considering optical and absolute error measurements. These results are later compared in 

section 4, where the discussion and explanation of the behavior of the models and its results is introduced. Finally, in 

section 5 the conclusions of the work are presented, along with some insights on the possible future lines that this work 

leads to. 

2. METHODS AND TECHNIQUES 

2.1 TPI-WFS 

The TPI–WFS uses a technique for deriving the wavefront aberration from two intensity measurements (I1 and I2) using 

the first derivative of the wavefront, rather than contrast proportional to the Laplacian of the phase (as in curvature 

sensors). The photon shift measurements in different projections can be expressed as an expansion over Zernike 

polynomials using a least squares fit. This way of expressing the results, either as a set of coefficients or as surface, 

facilitates the wavefront compensation by using a deformable mirror, as it is shown in Figure 1. 

 

Figure 1. Conceptual diagram of a curvature sensor. Design from [2]. 

 

2.2 Convolutional Neural Networks 

Adapting CNNs to a given training data implies the usage of filters in each convolutional layer, which are adjusted in the 

training process to extract the most relevant features from the data to be modeled. This process can be repeated through 



 

 
 

 

several layers until reaching a fully connected Multi-Layer Perceptron (MLP) that provides the output [20]. The MLP 

has, as inputs, the features selected with the convolutional layers.  

Training process also involves the adjustment of the weights in the connections between the neurons of adjacent layers 

of the MLP, as well as the weights of the filters from the convolutional layers. 

In Figure 2 is shown how the usual topology of a CNN is represented. The image is given as an input to the network, 

which is followed by sets of convolutional and subsampling layers. Each convolutional layer extracts a defined number 

of feature maps, which will have its size reduced after being processed by the sub-sampling layer. This process is 

repeated the desired amount of times until reaching the MLP. 

 

 

Figure 2. Example of the topology and implementation of a convolutional neural network. After the sequences of 

convolution and sub-sampling layers, the output feature maps are connected to a multi-layer perceptron. 

 

2.3 Simulations. 

Model used for the reconstruction was a CNN which was trained with phases of 25 Zernike modes, from turbulence 

simulations with r0 ranging from 5 cm to 20 cm, and wavelength of 590 nm. As the original TPI-WFS was designed for 

an AO system that corrected the first 25 Zernike modes, the simulations were performed to represent a telescope with a 

deformable mirror that also allows correction of the first 25 Zernike modes. The recovered phases obtained by both 

reconstructors, TPI-WFS and CNN reconstruction, were compared with the reference phase, corresponding to the 

original simulated phase. The comparison was made between the recovered phases using 25 Zernike modes, since the 

deformable mirror that were in the TPI-WFS has this resolution as limitation, and the reference phase which contains 

153 Zernike modes. 

Specifically, the chosen network used for training 1500000 images of 56 pixels of side as inputs. These images had 2 

channels, corresponding with the I1 and I2 presented in Figure 1. The network had 4 convolutional layers, each of them 

with four filters of size 3x3, shifting 1 pixel horizontally in each step, and then, 1 vertically. In order to do this along all 

the image, 1 zero was padded outside of the edges of each image. After each convolutional layer, a rectified linear unit is 

applied [21]. Also, after the second convolutional layer, Max-Pooling, a sample-based discretization process [22,23] is 

applied in sections of 4x4 , and after the fourth in sections of 7x7. 

The number of images increased in 4 times for each convolutional layer (due to the 4 filters in each layer), leading to 512 

images of size 2x2 at the end of the convolutions. This represents 2048 values which are the input values of the neurons 

that conformed the fully connected MLP. Each of these input neurons were paired all the 2048 neurons set to conform 

the hidden layer. At last, these were connected with the 25 output neurons, which corresponds with the 25 desired 

estimations of the Zernike coefficients. Also, another set of 100000 different images was used for testing in the training 

process. 



 

 
 

 

3. RESULTS 

3.1 Comparison and results 

Results obtained from the reconstruction of the CNN can be compared with the TPI-WFS reconstruction by means of 

optical measurements, such as Root Mean Square (RMS) error, Mean Structural Similarity (MSSIM) and Strehl ratio. 

The RMS error is calculated with each of the recovered phases compared with a reference phase. As it can be seen in 

Figure 3, the error decreases in the less turbulent scenarios for both methods, as the value of r0 increases. For the most 

turbulent scenarios the CNN shows better results for the reconstruction. 

 

Figure 3. Root Mean Square error of the difference between a recovered phase image and the reference one with the 

Convolutional Neural Network reconstruction and the Tomographic Pupil Image Wavefront Sensor reconstruction. 

 

MSSIM is shown in Figure 4, measuring the image quality of the reconstructions obtained from both methods. Best 

results are obtained by the CNN with values from 5 to 12 cm, from this value, results of both technique were very 

similar. As happened with the RMS, the results of the CNN in the most turbulent scenarios improves the ones of the 

reconstructor in TPI-WFS. Overall, both methods work well in terms of image quality. 

 

 
Figure 4. Mean Structural Similarity index for measuring image quality between a recovered phase image and the reference 

one with the Convolutional Neural Network reconstruction and the Tomographic Pupil Image Wavefront Sensor 

reconstruction. 

 



 

 
 

 

Results of the Strehl ratio are shown in Figure 5. Both methods showed improvements as the value of r0 raises and 

consequently in less turbulent profiles. The CNN shows better performance than the TPI-WFS reconstruction in all the 

cases. 

 

 

Figure 5. Strehl ratio of the difference between a recovered phase image and the reference one, measuring similarity with 

the Convolutional Neural Network reconstruction and the Tomographic Pupil Image Wavefront Sensor reconstruction. 

 

The images, as an example of the results from the reconstruction with both systems, can be shown in Figure 6. These 

images support the results presented above, with both reconstructors performing a notable approach.  

 

 

Figure 6. From left to right, Tomographic Pupil Image Wavefront Sensor recovered phase, Convolutional Neural Network 

recovered phase and Reference phase with 153 Zernikes. All are 80x80 pixels images representing the pupil of 56 pixels as 

diameter. 

 

4. DISCUSSION 

In general, the CNN reconstruction showed slightly better performance than the TPI-WFS reconstruction for the slightest 

turbulent scenarios, and made notable improvements for higher turbulent profiles that have the lowest r0 values, as can 

be seen in the Figures 3, 4 and 5.  

On the other hand, the CNN needed to be trained again every time that a parameter of the simulated optical arrangement 

was modified. Nevertheless, further studies are warranted including noise and low light illumination. 



 

 
 

 

The main reason for the improvements achieved by the CNN relies in the training procedure. Since computational 

simulations were available, which allowed to generate data with enough variability to cover all the turbulent profiles 

satisfactorily. In particular, the most turbulent scenarios, where the r0 reach its lowest values, has the same importance in 

the training as the rest of profiles. Consequently, the notable results in these cases are reasonable, concretely when 

considering direct measurements of the error, such as in the RMS case, where the differences are more noticeable. 

Values obtained for the Strehl ratio are lower than the usuals, due to the simulated system corrects the first 25 Zernike 

modes of the input phase, for the posterior usage of the Lucky Imaging technique. This implies a limitation on the 

obtainable maximum Strehl ratio. In the cases where the correction is performed only with the deformable mirror, the 

advantages of machine learning were already proven, as in the case of CARMEN [9]. In the case of TPI-WFS, when 

used with Lucky Imaging, promising results can be obtained, even with images of higher resolution, but the utilization of 

machine learning was not tested yet. However, a CNN can also be trained to obtain a higher number of Zernikes in 

systems with corrections based on the characteristics of a deformable mirror. 

 

5. CONCLUSIONS 

The artificial network approach to the AO image reconstruction correspondent to TPI-WFS data was adequate. The 

usage of CNN as technique gave notable results thanks to the advantage of allowing the usage of images as inputs and 

the capability of extracting its main features. 

Performance of both methods for phase reconstruction has been compared. In this study performed with computational 

simulations, the CNN approach was revealed as a promising method. Both methods showed notable result in the 

majority of turbulent profiles, however, the CNN improved the TPI-WFS reconstruction, giving better results, in 

average, for the strongest turbulence cases. 

Usage of other techniques of artificial intelligence suppose the possibility of increasing the performance of the 

reconstruction. Methods as recurrent real time learning, suggest that more information from the data can be learned in 

the training process on a neural network.  
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