GRAAL on-sky performance with the AOF

J. Paufique,
with the large AOF team
within ESO in Europe and Chile
the AOF and GRAAL: who does it take?

- **Sub-Systems Responsible:**
 - J.Paufique, P.LaPenna, E.Vernet, W.Hackenberg
 - AO Specialists:
 - M.LeLouarn, S.Stroebele, J.Kolb, N.Muller, A.Garcia-Rissmann, E.Marchetti
 - Laser Specialists:
 - D.Bonaccini Calia, T.Pfrommer, S.Lewis, P.Amico
 - Mechanics:
 - R.Conzelmann, R.Guzman, M.Quattri, P.Jolley, R.Ridings, J.A.Abad, C.Frank, J.Quentin
 - Optics: Control:
 - B.Delabre, B.Buzzoni, L.Petazzi, S.Babak, F.Gago, S.Sandrock, N.di Lieto
 - Electronics:
 - Detectors:
 - M.Downing, J.Reyes, L.Mehrgan
 - Software:
 - Integration:
 - Paranal Support:
 - P.Haguenauer, P.Sansgasset, V.Heinz, Ralf, Joel, J.L Alvarez, P. Hibon
 - Project Office:
 - P.-Y.Madec, H.Kuntscher, J.-F.Pirard, R.Arsenault

Industrial support: NTE-SENER (main assembly)

"Sponsors"
- N.Hubin, E.Fedrigo, G.Finger, M.Cayrel, and…
- The HAWK-I IoT

27. June 2017, Tenerife AO4ELT5
the AOF and GRAAL: What does it take…
GRAAL: a GReat Adaptive optics with Aof Lego

- 4 LGS, side-launched on a 11’ diameter constellation
- 40x40 LGS-WFS, Shack-Hartmann, 5” FoV (x4)
- Secondary deformable mirror, 1170 actuators
- 6 arcmin off-axis TT sensor
- Maintenance mode (MCM): NGS-SCAO
- SPARTA RTC
A GLAO-SCAO system at the VLT
expected performance

- Wide-field AO:
 Unobstructed field of view 7.5x7.5 arcmin²
- 30-40% reduction of FWHM (K-band)
- Enables an image quality better than 0.3" in K-band 25% of the time
- 100% sky coverage

27. June 2017, Tenerife AO4ELT5
A GLAO-SCAO system at the VLT design

- GRAAL embedded in HAWK-I:
 - rotates with the field
 - Is a very thin cylinder (300 mm thick)
- LGS on a pupil-tracking co-rotator => large motor and crammed cable wrap
- TT-sensor on a 6-7 arcmin radius
 - Crosses Rayleigh beams
 - Complicated observation preparation
- SCAO mode including
 - 40x40 WFS (identical to LGS)
 - Focal extender x6, maintaining back focal distance
A SCAO system at the VLT
results

- Very first results obtained last December
- Second run in February
- 70% on Naos for 1” seeing
- Removed faulty actuators SW-wise
- Best flat obtained and used in operation since then
- UT4 has now a (better) pupil sensor -> better UT4

27. June 2017, Tenerife AO4ELT5
Most done in December, resuming in October

Large gain in FWHM, no surprise expected (confirmed with GALACSI, see J. Kolb’s talk)
GRAAL Acquisition sequence

1. **Preset of telescope, 4LGSF, motors, RTC, HAWK-1**
 - 4LGSF FS Preset
 - Telescope Preset
 - Set DSM in TF mode
 - Deploy GALACSI mode
 - Disable DSM simulation on RTC
 - 4LGSF LPC Preset (set asterism)
 - AOF Preset
 - LGS WFS initial setup

2. **NGS acquisition**
 - Tip/Tilt Sensor Bootstrap
 - Tip/Tilt Sensor Camera Bootstrap
 - Sky map measurement
 - NGS Detection and Centering

3. **Wait for 1 Act. Opt. correction**

4. **LGS acquisition**
 - LGS WFS Camera Bootstrap
 - Set AODRIVEN
 - LGS Set Search Mode
 - LGS JM Search
 - LGS Apply Corrections
 - LGS Unset Search Mode
 - LGS Check Flux
 - LGS Focus bootstrap
 - LGS Skymap Measurements

5. **Close NGS TT loop**
6. **Take control of telescope**
7. **Close LGS WFS loops**
8. **Close auxiliary loops**

GRAAL Acquisition sequence

50 sec
A GLAO system at the VLT
Status: the submerged part

- Pupil alignment: large variations (+/-70%), -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI
- Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components
- TT sensor focusing far from ideal, -> mechanical intervention
- Safety features glitches (WFS, cooling) -> adjusted
- Natural ageing of EM-CCD (gain loss of 40%), re-calibrated
- 4LGSF system availability not ideal (AAC, LPC, cables)
A GLAO system at the VLT
Status: the submerged part

- Pupil alignment: large variations (+/-70%), -> compensated by SW
- 4LGSF acquisition extremely robust with GRAAL, improved with GALACSI
A GLAO system at the VLT

single point of failure
Pupil alignment: large variations (+/-70%), -> compensated by SW

4LGSF acquisition extremely robust with GRAAL, improved with GALACSI

Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components
Pupil alignment: large variations (+/-70%), -> compensated by SW

4LGSF acquisition extremely robust with GRAAL, improved with GALACSI

Degraded mode of operation tested (on purpose!) with 3 LGS-WFS, co-rotator components

TT sensor focusing far from ideal, -> mechanical intervention

Safety features glitches (WFS, cooling) -> adjusted

Natural ageing of EM-CCD (gain loss of 40%), re-calibrated

4LGSF system availability not ideal (AAC, LPC, cables)
Coming soon:

- GRAAL installed in 2015, progressing very slowly since then (organization had higher priorities set elsewhere)
- GLAO briefly tested, will be really commissioned over Oct-Dec 2017
- SCAO demonstrated the capability of the DSM
- HAWK-I (adaptive) facility operation planned for Oct-2018