An approach using deep learning for tomographic reconstruction in solar observation

28th June 2017
Contents

- Solar Adaptive Optics
- Durham AO Simulation Platform (DASP)
- Deep Learning
 - What is Deep Learning?
 - Deep Learning in AO
 - Deep Learning in Solar AO
- Conclusions and Future Lines
Solar Adaptive Optics

- Some differences with night observation
- Massive object
- Turbulence profile have strong variations during the day
Durham AO Simulation Platform (DASP)

- Open-Source simulator for Adaptive Optics
- Night and Solar modes are available
- Developed in Durham University
Deep Learning

- Convolutional Neural Networks (CNN)
- Extract features from images, sounds, raw data...
- Usually classifiers, but they can compute any kind of value
Deep Learning

- Training – Calculate the optim filters and weight values
 - Randomly initialize the values
 - Use known data as input-output to the neural network
 - Compute the output and calculate the error
 - Backpropagate the error through the net
 - Update the weights
 - Repeat!
Deep Learning

- Execution – Compute the output
 - Should be really fast – Graphics Processing Units (GPUs)
 - It needs the ability to generalize
Deep Learning in AO

- Complex Atmospheric Reconstructor based on Machine lEarNing (CARMEN)
- Tomographic reconstructor of atmospheric profiles
- Successfully tested in nocturnal observations
Deep Learning in AO

- Tomographic Pupil Image Wavefront Sensor (TPI-WFS)
- Use images as inputs and calculate Zernike Polynomials
- “New adaptive optics Tomographic Pupil Image reconstructor based on convolutional neural networks” [P3030]
Deep Learning in Solar AO

- “Large” picture of the sun
- Divide the image in small pieces
- Create different turbulence profiles
- Input: Image + Turbulence
- Output:
 - Slopes
 - Deformable mirror actuators
Deep Learning in Solar AO

- First Tests
 - Can not compare with other algorithms (not enough time!)
 - Normalized outputs (-1, 1)
- Shack Hartman images as inputs
- Slopes ~ 25% error
- Deformable mirror actuators ~20% error
Conclusions

- Very early stage of the project
- Promising results
- Deep Learning + Adaptive Optics = Cool combination

Future Lines

- A lot of ideas for testing
- They could be much better
- Recurrent neural networks, on-line training, classifiers...
- Different applications in astronomy