Calibration of residual aberrations in coronagraphic instruments with ZELDA: validation in VLT/SPHERE

Arthur Vigan (LAM), Mamadou N'Diaye (Observatoire de la Côte d’Azur)

J.-F. Sauvage, T. Fusco (ONERA), J. H. Girard, G. Zins (ESO)
J.-L. Beuzit, D. Mouillet, A. Carlotti (IPAG)
P. Janin-Potiron, P. Martinez, M. Carbiillet (Observatoire de la Côte d’Azur)

AO4ELT5
Tenerife - 28/06/2017
Context

• Direct imaging and spectroscopy of exoplanets
 ‣ VLT/SPHERE, Gemini/GPI, Subaru/SCExAO, etc
 ‣ disks, warm or massive gas giant planets
 ‣ high contrast (Δmag>10) at small separations (0.1‰”-0.5‰”)

• Instrument limitations
 ‣ quasi-static aberrations
 ‣ temporal stability

• Need of a clean PSF for optimal starlight rejection
 ‣ Calibration of pre-coronagraph aberrations

Direct imaging of colder or lighter exoplanets

• Residual aberrations:
 ‣ How to calibrate them?
 ‣ Their origin?
 ‣ Their temporal evolution?

• Our solution:
 ‣ Zernike wavefront sensor
Zernike wavefront sensor

- Conversion of the phase aberrations into intensity variations
 - $I_c = \alpha \sin \varphi + \beta$
 - Small aberrations: $I_c = \alpha \varphi + \beta$

![Diagram of Zernike wavefront sensor](image)

N'Diaye et al. 2013
Linearity range of the sensor

- Linearisation of the amplitude ↔ expression valid only near zero phase error
- Limited capture range: $-0.14\,\lambda_0 \rightarrow 0.36\,\lambda_0$
- Possible extension of the capture range in closed loop

![Graph showing WFE in nm at $\lambda_0=1.642\,\mu m$ with corrections for different piston values.](image)

$Vigan\ et\ al.\ 2011,\ N'Diaye\ et\ al.\ 2013$
Implementation in VLT/SPHERE

ZELDA

Zernike sensor for Extremely accurate measurements of **Low-level Differential Aberrations**

- Original measurement strategies:
 - VLT/SPHERE: off-line phase diversity
 - GPI: Mach-Zehnder interferometer behind coronagraph

- Our proposal:
 - ZELDA a concept based on phase-contrast technique
Current implementation in SPHERE

J.-L. Beuzit’s talk Thursday morning
ZELDA prototype in SPHERE

- Fused silica substrate
- Mask by photolithographic reactive ion etching (SILIOS, France)
- Within 1% of the specifications

Installation during SPHERE reintegration at Paranal in April 2014

\[\lambda = 1.62 \ \mu m \ (H\text{-band}) \]

\[D = 70.7 \ \mu m \]

\[z = 0.815 \ \mu m \]
Validating ZELDA in SPHERE

- Internal point source
- IRDIS pupil-imaging mode, $\lambda = 1642$ nm (Fe II filter)
- PSF centered manually + closed loop on near-IR DTTS
- Zernike and Fourier modes, amplitude ramps: -250 \rightarrow 600 nm PtV

Zernike modes introduced with 400 nm PV on the DM

N'Diaye et al. 2016
Quantitative performance assessment

• theory vs. measurements:
 ‣ excellent agreement!
• low sensitivity to wavelength of measure

N'Diaye et al. 2016
NCPA measurement and compensation

45 nm RMS

Before correction

Phase errors [nm]

30 nm RMS

Before correction [filtered]
NCPA measurement and compensation

45 nm RMS

30 nm RMS

35 nm RMS

16 nm RMS

Tip-tilt: ~12 nm RMS

Manual centering + tip-tilt closed loop

N'Diaye et al. 2016
Impact on coronagraphic images

Apodised pupil Lyot coronagraph, H-band

Before calibration
Impact on coronagraphic images

Apodised pupil Lyot coronagraph, H-band

After calibration

0.85"

0.20"
Contrast gain after ZELDA calibration

perf. limit of SPHERE coronagraph

x10 gain @ 0.2"

→ ZELDA will be used for NCPA calibration in SPHERE this year

N'Diaye et al. 2016
Towards ZELDA on sky

New tests in March 2017

- Internal performance
- On-sky performance

Procedure
- Internal NCPA calibration
- Calibrated reference slopes applied on-sky

Internal performance
- On-par with 2015
- 5-10 contrast gain

Vigan et al. in prep
Towards ZELDA on sky

New tests in March 2017

- **Internal performance**
- **On-sky performance**

Procedure

- internal NCPA calibration
- calibrated reference slopes applied on-sky

Internal performance

- on-par with 2015
- 5-10 contrast gain

On-sky performance

- no contrast gain yet!
- reason unknown:
 - chromatic beam-shift?
 - near-IR ADCs?
 - amplitude aberrations?
ZELDA in E-ELT/HARMONI high-contrast mode

- **Goal:**
 - spectro-imaging of young giants
 - $R=3000-20000$; 10^{-6} contrast at 0.2" and closer, in H & K bands

- **No ADC in the instrument:**
 - Dispersed beam & PSF
 - SCAO sensing at 0.8 um & science at 1.45-2.45 um:
 - *significant NCPA*

- **ZELDA @ 1.25 um, prospects:**
 - NCPA calibration: less constraints on surface quality of upstream optics
 - Pupil centering follow-up (0.5% accuracy): good for pupil masking
 - Fine E-ELT cophasing
ZELDA-Phasing Sensor

• Fine phasing sensor in diffraction-limited regime
 ‣ For each segment, measurements of piston, tip, tilt

• ZELDA-Phasing sensor
 ‣ Mode estimation with nanometric accuracy
 ‣ Closed-loop wavefront control for fine segment alignment
 ‣ promising option for fine cophasing of ELTs

Janin-Potiron et al. 2017
Conclusions

• **ZELDA for the calibration of residual aberrations**
 ‣ easy to manufacture
 ‣ simple alignment
 ‣ no calibration required
 ‣ fast and straightforward data analysis

• **Validation in VLT/SPHERE**
 ‣ excellent agreement between measurements and theory
 ‣ NCPA compensation: gain x10 in contrast at 0.2"
 ‣ implementation in the calibration plan of SPHERE in 2017

• **Powerful diagnostic tool for current and future AO facilities**
 ‣ internal and on-sky measurements
 ‣ several SPHERE examples: low-wind effects, internal turb., derotator behavior