Wave diagrams for ideal 2-fluid plasmas

Rony Keppens

Centre for mathematical Plasma Astrophysics
KU Leuven
MHD wave signals

- **static homogeneous plasma**: slow, Alfvén, fast wave pairs
 - the **phase speed diagrams** quantify for every angle θ between \mathbf{k} and \mathbf{B} how far a plane wave can travel in fixed time
 - point perturbation leads to the related **group diagram**, found from a Huygens construction on the phase speed diagram (constructive interference of all plane waves)
Phase and group diagrams [G&P, CUP, 2004]

Friedrichs diagrams (schematic) parameter $c_s/b = \frac{1}{2} \gamma \beta$, $\beta \equiv 2p/B^2$

Phase diagram (plane waves) Group diagram (point disturbances)
• locally perturb homogeneous magnetized plasma at rest
 \[\Rightarrow \gamma = \frac{5}{3}, \rho = 1, \rho_{\text{th}} = 0.6 \text{ and } B = 0.9\hat{e}_x \ (c_s = 1, b = 0.9) \]
 \[\Rightarrow (x, y) \in [-0.5, 0.5]^2 \text{ in 2.5D ideal MHD, include } v_z, B_z \]
 \[\Rightarrow \text{perturb at origin with } \delta \rho = 0.1, \delta v_z = 0.01 \text{ and } \delta \rho_{\text{th}} = 0.06 \]
• MHD counterpart of \textit{‘throwing a stone in a puddle’}

\[\Rightarrow \text{entropy, total pressure, } B_z \text{ at finite time} \]
Extension to Hall-MHD

- Hall-MHD: ion dynamics (massless e) in charge-neutral plasma $n_e = Zn_i$, where speeds $\mathbf{v} = \mathbf{u}_i$ and $\mathbf{u}_e = \mathbf{v} - (en_e)^{-1}\mathbf{j}$ and $\rho = n_i m_i$

 \[\Rightarrow \] induction equation modifies to:

\[
\frac{\partial \mathbf{B}}{\partial t} - \nabla \times [(\mathbf{v} - \frac{m_i}{Ze\rho}\mathbf{j}) \times \mathbf{B}] = 0
\]

\[\Rightarrow \] introduces ion inertial length $\delta_i \equiv c/\omega_{pi}$, obtain DR

\[
(\omega^2 - k^2b^2) \left[\omega^4 - k^2(b^2 + c_s^2)\omega^2 + k^2k^2b^2c_s^2 \right] - \lambda_H\omega^2k^2b^2 \left(\omega^2 - k^2c_s^2 \right) = 0
\]

\[\Rightarrow \] waves now dispersive, $\lambda_H \equiv (k\delta_i)^2$ Hall parameter
Hameiri et al, PoP 12, 072109 (2005): study DR, vary $\sigma = \frac{c_s^2}{b^2}$

\Rightarrow wave normal (phase) and ray surfaces (group)

\Rightarrow still 3 pairs of waves (forward-backward)

\Rightarrow all 3 waves dispersive: seen in $\omega - k$ diagrams
• $\omega - k$ diagrams can be shown for varying ϑ (angle k and B)

⇒ from parallel to perpendicular
alternative representation: phase diagrams (wave normal surfaces): fix $\lambda_H = k\delta_i$, show all angles (left panel is MHD)
can show this for varying σ (i.e. β) and animate for varying wavelength (increasing Hall parameter)
• Much more intriguing: ray surfaces (group diagrams): implicit derivation on DR yields $\frac{\partial \omega}{\partial k}$ expressions as

$$\frac{\partial \omega}{\partial k} = f_b(\omega, \sigma, k, \cos \vartheta) \hat{b} + f_n(\omega, \sigma, k, \cos \vartheta) \hat{n}$$

⇒ quantifies approximate wave fronts, $\hat{b} = \mathbf{B}/B$ and $\hat{n} = \mathbf{k}/k$
for $\sigma = 0.5$, MHD to large Hall parameter
\Rightarrow note the sometimes ‘strange’ ordering (slow-Alfvén-fast)
• for $\sigma = 1$, MHD (also special in MHD!) to large Hall parameter
for $\sigma = 2$, MHD to large Hall parameter animation (increasing Hall parameter)
• relevant as test for numerical Hall-MHD: Porth et al, ApJS 214, 2014 (MPI-AMRVAC): pressure pattern emerging from interference, fast & Alfvén envelope
Ideal 2-fluid diagrams

 ⇒ DR best written in terms of $\bar{\omega} = \omega/\omega_p$, $\bar{k} = kc/\omega_p = k\delta$
 with plasma frequency ω_p and skin depth δ, then obtain 12-th order polynomial (6th order in ω^2, fourth in k^2)
 ⇒ parameters $E = \Omega_e/\omega_p$ (electron cyclotron), $v = v_e/c$, $w = v_i/c$ (sound speeds) and $\mu = Zm_e/m_i$ (mass ratio)

• known limits:
 ⇒ short k: MHD and plasma cut-offs
 ⇒ large k: 2xEM (kc), ion and e sound, e and ion cycl. res.
- $\omega-k$ diagrams, for varying angles $\cos(\vartheta) = k \cdot B / kB$, coronal loop
• vary angles $\cos(\vartheta) = \mathbf{k} \cdot \mathbf{B} / kB$, coronal loop
as angle varies: branches show (avoided) crossings, ‘labeling’ waves must ultimately involve the way eigenfunctions remain similar on various branches!

see changeover through zeros of derivative of DR
Show alternative wave normal (phase) diagrams, for varying $k\delta$
⇒ note several branches with superluminal phase speeds!

⇒ animate through wavenumber range
similar obtain the ray (group) diagrams, again implicit derivation on 12th order DR, with limits short (EM) and long wavelength (MHD), group speeds $< c$! animate through wavenumber
suppose you resolve up to $k\delta = 10$, interference leads to:
• MHD to Hall-MHD to 2-fluid model: increasing complexity in wave dynamics: *dispersion rules*, enormous differences in wave propagation characteristics
 \[\Rightarrow \text{regime } k\delta \sim \mathcal{O}(0.1 - 10): \text{fascinating constructive-destructive interferences} \]

• can study all limits of physical relevance:
 \[\Rightarrow \text{cold plasmas, electron-positron mixtures, \ldots} \]
 \[\Rightarrow \text{limit to Hall-MHD from 2-fluid: take } \mu \to 0, \ c \to \infty \]
 \[\Rightarrow \text{MHD as non-dispersive, long wavelength limit} \]