Energy transport and heating by torsional Alfvén waves in the partially ionised chromosphere

Roberto Soler
J. Terradas, R. Oliver, J. L. Ballester

Solar Physics Group
and
Institute of Applied Computing & Community Code
Universitat de les Illes Balears (Spain)

BUKS 2018: Waves and instabilities in the solar atmosphere
La Laguna, 3–7 September 2018
Observations show that \textbf{Alfvénic} (Alfvén and/or kink) waves are present in all layers of the solar atmosphere:

- Photosphere: e.g., Jess et al. (2009)
- Chromosphere: e.g., De Pontieu et al. (2014), Srivastava et al. (2017)
- TR and Corona: e.g., McIntosh et al. (2011), Morton et al. (2015)

The driver is probably located at the photosphere

- Horizontal flows: e.g., Spruit (1981), Choudhuri et al. (1993), Huang et al. (1995), Stangalini et al. (2014)
- Vortex motions: e.g., Shelyag et al. (2011, 2012), Wedemeyer-Böhm et al. (2012), Morton et al. (2013)

\textbf{Estimated driven energy flux (averaged)}: $\sim 10^7 \text{ erg cm}^{-2} \text{ s}^{-1}$

Waves may carry sufficient energy to heat the plasma

- Quiet-Sun energy requirements (Withbroe & Noyes 1977):
 - Lower chromosphere radiative losses: $10^{-1} \text{ erg cm}^{-3} \text{ s}^{-1}$
 - Middle and upper chromosphere radiative losses: $10^{-3} - 10^{-2} \text{ erg cm}^{-3} \text{ s}^{-1}$
 - Corona total energy loss: $\sim 3 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1}$
Introduction

Despite the observational evidence, many open questions are still under debate:

1. How are Alfvén waves driven in the weakly ionized and probably unmagnetized photosphere?
2. Can the waves transport sufficient energy to the outer atmosphere and solar wind?
3. What are the physical mechanisms that can dissipate the wave energy?
4. Is the plasma heating/particle acceleration efficient enough?

Before considering complicated scenarios, we aim to understand propagation and deposition of energy by Alfvén waves in a simple model of the lower solar atmosphere

Previous works in this line: e.g., Goodman (2011), Tu & Song (2013), Arber et al. (2016), Shelyag et al. (2016), Soler et al. (2017),...
A Simple Model for the Lower Solar Atmosphere

- Background atmosphere based on FAL93-C chromospheric model (Fontenla et al. 1993) extended up to 4,000 km
- Quiet Sun: Photosphere + Chromosphere + TR + Low Corona
- Partially ionized plasma
- Species: e, p, H, He I, He II, and He III

(a)

(b)

\[
\rho (\text{kg m}^{-3}) \\
10^{-5} \\
10^{-8} \\
10^{-11} \\
0 \\
1000 \\
2000 \\
3000 \\
4000 \\
\text{Height (km)}
\]

\[
T (\text{K}) \\
1 \times 10^4 \\
5 \times 10^4 \\
1 \times 10^5 \\
5 \times 10^5 \\
1 \times 10^6 \\
0 \\
1000 \\
2000 \\
3000 \\
4000 \\
\text{Height (km)}
\]
A Simple Model for the Lower Solar Atmosphere

- Potential magnetic flux tube
- Vertical and untwisted
- Photospheric field strength ~ 1 kG
- Coronal field strength ~ 10 G
- Expansion with height $R_{\text{corona}}/R_{\text{photosphere}} \sim 10$
Basic Equations

- All ions (\(p, \text{He II, He III}\)) treated as a single ionic fluid
- Inertia of electrons is neglected → Ohm’s Law
- Dissipation: Ohm’s diffusion + Ion-neutral friction
- Linearized equations for torsional Alfvén waves strictly polarized in the azimuthal direction, \(\varphi\)

\[
\rho_i \frac{\partial \mathbf{v}_{i,\varphi}'}{\partial t} = \frac{1}{\mu r} \mathbf{B} \cdot \nabla (rB'_{\varphi}) - \alpha_{iH} (\mathbf{v}_{i,\varphi}' - \mathbf{v}_{H,\varphi}') - \alpha_{iHeI} (\mathbf{v}_{i,\varphi}' - \mathbf{v}_{HeI,\varphi}')
\]
\[
\rho_H \frac{\partial \mathbf{v}_{H,\varphi}'}{\partial t} = -\alpha_{Hi} (\mathbf{v}_{H,\varphi}' - \mathbf{v}_{i,\varphi}') - \alpha_{HHeI} (\mathbf{v}_{H,\varphi}' - \mathbf{v}_{HeI,\varphi}')
\]
\[
\rho_{HeI} \frac{\partial \mathbf{v}_{HeI,\varphi}'}{\partial t} = -\alpha_{HeIi} (\mathbf{v}_{HeI,\varphi}' - \mathbf{v}_{i,\varphi}') - \alpha_{HeIH} (\mathbf{v}_{HeI,\varphi}' - \mathbf{v}_{H,\varphi}')
\]
\[
\frac{\partial B'_{\varphi}}{\partial t} = r\mathbf{B} \cdot \nabla \left(\frac{\mathbf{v}_{i,\varphi}'}{r} \right) + \eta \left(\nabla^2 B'_{\varphi} - \frac{1}{r^2} B'_{\varphi} \right) + \frac{\partial \eta}{\partial z} \frac{\partial B'_{\varphi}}{\partial z}
\]
Steady-state propagation

- Steady state of wave propagation: temporal dependence as $\exp(-i\omega t)$

- Partial differential equation for the magnetic field perturbation:

$$i\omega B'_\varphi + rB \cdot \nabla \left[\frac{i}{\omega} \frac{1}{\mu \rho_{\text{eff}}} \frac{1}{r^2} B \cdot \nabla (rB'_\varphi) \right] + \eta \left(\nabla^2 B'_\varphi - \frac{1}{r^2} B'_\varphi \right) + \frac{\partial \eta}{\partial z} \frac{\partial B'_\varphi}{\partial z} = 0$$

- $\rho_{\text{eff}} \equiv$ effective plasma density containing the effect of particle-particle collisions (inertia + damping)

- Governing equation numerically integrated with finite elements in a non-uniform mesh

- Perturbations decomposed into upward (↑) and downward (↓) propagating waves with the help of the Elsässer variables → Separation between upward and downward energy fluxes
Wave Driver

- Broadband wave driver for B'_ϕ at the photosphere
 - Frequency range: $0.1 \text{ mHz} \leq f \leq 300 \text{ mHz}$
 - Spectral weighting function (Tu & Song 2013; Arber et al. 2016):
 \[
 A(f) \sim \begin{cases}
 \left(\frac{f}{f_p}\right)^{5/6}, & \text{if } f \leq f_p, \\
 \left(\frac{f}{f_p}\right)^{-5/6}, & \text{if } f > f_p,
 \end{cases}
 \]
 - Peak frequency: $f_p \approx 1.59 \text{ mHz}$
 - **Injected energy flux:** $10^7 \text{ erg cm}^{-2} \text{ s}^{-1}$

- Appropriate treatment of wave reflection and transmission:
 - Photospheric boundary: driven wave (↑) + reflected wave (↓)
 - Coronal boundary: transmitted wave (↑)

- Only driven wave is imposed
- Reflected and transmitted waves self-consistently computed
Perturbations

Vertical cuts

- $r = 50 \text{ km}$
- $r = 100 \text{ km}$
- $r = 500 \text{ km}$
Phase mixing

Horizontal cuts

![Graphs showing phase mixing and horizontal cuts with specific values of z: z = 0 km, z = 100 km, z = 500 km, and z = 4,000 km. The graphs display variations in B' and v' (km/s) over the radial direction (km).]
Phase mixing

Horizontal cuts

Current density perturbation
Only \(\sim 1\% \) of the injected flux reaches the corona... but

- Transmitted energy flux: \(\sim 1.5 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \)
- Quiet-Sun corona total energy loss: \(\sim 3 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \)

(Withbroe & Noyes 1977)
Only \(\sim 1\% \) of the injected flux reaches the corona... but

- Transmitted energy flux: \(\sim 1.5 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \)
- Quiet-Sun corona total energy loss: \(\sim 3 \times 10^5 \text{ erg cm}^{-2} \text{ s}^{-1} \)

(Withbroe & Noyes 1977)
Only \(\sim 1\%\) of the injected flux reaches the corona... but

- Transmitted energy flux: \(\sim 1.5 \times 10^5\) erg cm\(^{-2}\) s\(^{-1}\)
- Quiet-Sun corona total energy loss: \(\sim 3 \times 10^5\) erg cm\(^{-2}\) s\(^{-1}\)

(Withbroe & Noyes 1977)
Low frequencies are reflected (incoming flux \approx reflected flux)

High frequencies are dissipated \rightarrow Heating
(incoming flux \gg reflected flux + transmitted flux)

Very small transmissivity (peak $\sim 2 - 5$ mHz)
Heating Rates

Required volumetric heating (Ulmschneider 1974; Withbroe & Noyes 1977):

- Lower chromosphere: 10^{-1} erg cm$^{-3}$ s$^{-1}$
- Middle and upper chromosphere: $10^{-3} - 10^{-2}$ erg cm$^{-3}$ s$^{-1}$
Conclusions

Energy fluxes

- Low frequencies reflected back to the photosphere
- High frequencies damped in the chromosphere
- Only $\sim 1\%$ of injected flux is transmitted to the corona, but it is almost enough to compensate the total coronal energy loss

Chromospheric Heating

- Ohmic diffusion (enhanced by phase-mixing) heats the lower and middle chromosphere
- Ion-neutral friction heats the upper chromosphere
- Chromospheric heating rates compatible with (or even larger than) the required rates

Alfvén waves may play an essential role in the energy transport and dissipation in the solar atmosphere!
Conclusions

Energy fluxes

- Low frequencies reflected back to the photosphere
- High frequencies damped in the chromosphere
- Only \(\sim 1\% \) of injected flux is transmitted to the corona, but it is almost enough to compensate the total coronal energy loss

Chromospheric Heating

- Ohmic diffusion (enhanced by phase-mixing) heats the lower and middle chromosphere
- Ion-neutral friction heats the upper chromosphere
- Chromospheric heating rates compatible with (or even larger than) the required rates

Alfvén waves may play an essential role in the energy transport and dissipation in the solar atmosphere!
Conclusions

Energy fluxes

- Low frequencies reflected back to the photosphere
- High frequencies damped in the chromosphere
- Only $\sim 1\%$ of injected flux is transmitted to the corona, but **it is almost enough to compensate the total coronal energy loss**

Chromospheric Heating

- Ohmic diffusion (enhanced by phase-mixing) heats the lower and middle chromosphere
- Ion-neutral friction heats the upper chromosphere
- Chromospheric heating rates compatible with (or even larger than) the required rates

Alfvén waves may play an essential role in the energy transport and dissipation in the solar atmosphere!