Extragalactic research paths explored by space-borne CMB experiments

Gianfranco De Zotti
National Astrophysics Institute (INAF)
Padua Astronomical Observatory

Thanks to: Matteo Bonato, Diego Herranz, Marcos Lopez-Caniego, Mattia Negrello, Tiziana Trombetti
Extragalactic source populations

Courtesy of M. Bonato
The key for improvement: resolution

220 GHz

PICO/CORE/CMB-Bharat PCCS2

log_{10}(dN/d\log_{10}S) [sr]^{-1}

log_{10}(S) [Jy]

PICO 90% completeness
PCCS2 90% completeness
SPT
Mocanu et al. (2013)

Courtesy of D. Herranz and M. Lopez-Caniego
Extreme strongly lensed galaxies potentially visible up to \(z \approx 10 \)

![Graph showing extreme strongly lensed galaxies.](image)

- HLSJ091828.6+514223 \(z = 5.2 \)
- HLSJ091828.6+514223 rescaled to \(z = 10 \)

Courtesy of M. Bonato
Planned next generation CMB experiments like PICO, CORE, CMB-Bharat will detect several thousands high-z strongly lensed galaxies, reaching approximately the same flux density limit of Herschel searches but over an area more than 30 times larger.
Dusty Gems: 11 strongly gravitationally lensed galaxies at $z=2.2 - 3.6$ detected by Planck (Cañameras et al. 2015)
Continuum and CO(4-3) ALMA images of the strongly lensed galaxy PLCK_G244.8+54.9 at \(z \approx 3.0 \) (Cañameras et al. 2017) with an estimated magnification \(\mu \approx 30 \). The combination of extreme brightness, ALMA resolution (0.1’’ in this case) and gravitational stretching of the images (by \(\mu^{1/2} \), on average) results in a spatial resolution of \(\approx 60 \) pc, substantially smaller than the size of Galactic giant molecular clouds. Unlensed galaxies at this \(z \) are hardly resolved even by ALMA or by the HST. CO spectroscopy has allowed the measurement of the kinematics of the molecular gas with a typical uncertainty of 40-50 km/s.
Detection of a massive, fast (800 km/s) molecular outflow due to feedback processes at $z=5.3$ (Spilker et al. 2018). The outflow carries mass at a rate within a factor of 2 of the SFR and can thus remove a large fraction of the gas from the galaxy. All the other data points on the right-hand panel refer to local ULIRGs.
Proto-clusters of galaxies
Classical techniques for detecting galaxy clusters (optical/near-IR "red sequence", X-ray emission, SZ effect) preferentially or exclusively select evolved objects, with mature galaxy populations and a hot intra-cluster medium. As a result, most known clusters are at redshifts <1.5, i.e. below that of the peak of global star-formation activity.
Upper panel: specific SFR vs. redshift for different cluster galaxies and the overall cluster population. The gold shaded region shows the SF main sequence from Elbaz et al. (2011).

Lower panel: fraction of quiescent cluster galaxies vs. redshift. The quiescent population builds up quickly at earlier times.

Wagner et al. (2017)
Planck intermediate results. XXVII (2015)
Clustering data of high-z star-forming galaxies show that the typical scale of non-linear overdensities is \(\sim 1' \), close to the PICO high-frequency resolution (Negrello et al. 2017; data from Chen et al. 2016).
Multi-frequency imaging and CO spectroscopy of a proto-cluster core at $z \approx 2.4$ detected by Herschel.
Proto-cluster core at $z=4$ detected by Herschel.
$F_{\text{clump}} \geq 82 \text{ mJy}$
Conclusions
Planck has demonstrated the unique capability of all-sky CMB experiments to explore astrophysical phenomena otherwise unaccessible to the present day instrumentation.

Those presented are only examples. Other examples are blazar astrophysics and high frequency polarization of extragalactic sources, including dusty galaxies.

Next generation CMB experiments have the capability to make a giant leap forward in these fields.