Ion-neutral Coupling in Solar Prominences

Holly Gilbert: NASA GSFC

SDO AIA composite made from three of the AIA wavelength bands, corresponding to temperatures from .7 to 2 million degrees (hotter = red, cooler = blue).

LASCO C2 on January 4, 2002

Extreme ultraviolet Imaging Telescope (EIT) 304Å on February 2, 2001

- Length ~ 10 1000 Mm, Height ~ 1 100 Mm, Width ~ 1 - 10 Mm ($1 Mm = 1000 km = 10^8 cm$)
- Lifetime ~ hours months
- \circ T < 10⁴ K, N ~ 10¹⁰ cm⁻³, M ~ 10¹⁵ gm
- $_{\circ}~V \simeq 5$ 100 km s^-1

Some fundamental questions

• How are prominences formed?

 Are there fundamental differences between the various types (active region vs. quiescent)?

- What drives prominence evolution?
- What causes eruption?

 Does prominence density, magnetic structure, & pre-eruptive dynamics tell us something fundamental about the magnetic structure and available energy

Motivation:

Understanding prominence support
 Understanding prominence mass
 LOSS

 Observations of vertical flows: do ion-neutral interactions play a role?

 By understanding the ion-neutral coupling what can we infer about the

Force Balance in a Multi-Constituent Prominence Plasma

General Momentum Balance Equation (*jth* particle species)

$$\frac{\partial}{\partial t}(\rho_j \mathbf{u}_j) + \nabla \cdot (\rho_j \mathbf{u}_j \mathbf{u}_j) = -\nabla \rho_j - \nabla \cdot \tilde{\boldsymbol{\tau}}_j + n_j e Z_j (\mathbf{E} + \mathbf{u}_j \times \mathbf{B}) - \rho_j \frac{GM}{r^2} \hat{\mathbf{e}}_r$$

$$+\rho_{j}\sum_{k}\nu_{jk}\left(\mathbf{u}_{k}-\mathbf{u}_{j}\right)+F_{Rj}+F_{Tj}+m_{j}\sum_{k}P_{jk}\mathbf{u}_{k}-L_{j}\mathbf{u}_{j}$$

Other assumptions:

- Neglect flows along the magnetic field
- Constant density and temperature throughout system

 Collision frequencies appropriate for subsonic flow speeds (our calculated flow speeds are less than 0.1 km s⁻¹)
 Local magnetic field is exactly horizontal to the (locally flat) solar surface

EXAMPLE: Proton Force Balance

z-component:
$$u_{py} = -g/\Omega_p + \Omega_p^{-1} \Big[V_{pe} (u_{ez} - u_{pz}) + V_{pH} (u_{Hz} - u_{pz}) + V_{pHe^+} (u_{He^+z} - u_{pz}) \Big]$$

y-component:
$$u_{pz} = \Omega_p^{-1} \Big[v_{pe} (u_{ey} - u_{py}) + v_{pH} (u_{Hy} - u_{py}) + v_{pHe^+} (u_{He^+y} - u_{py}) \Big]$$

$$\mathbf{B} = B\hat{\mathbf{e}}_{\mathbf{x}}$$

$$\mathbf{g} = -\hat{\mathbf{e}}_{\mathbf{z}} G M/r^2$$

$$\boldsymbol{\Omega}_j = Z_j \ eB/m_j$$

Perpendicular Flow in a H-He Prominence Plas

Parameter Study

Considered dependence of particle velocities on variation of several parameters (reference values in parentheses):

- Total atom density (10¹⁰ cm⁻³)
- Helium abundance by number (0.1)
- H and He ionization fractions (0.5 and 0.1)
- $_{\circ}$ Temperature (7 x 10³ K)
- Magnetic field (10 G)

Time Scales for Neutral Atom Loss $|u_{He}| \approx 10^4 \left[\frac{10^{10} \text{ cm}^{-3}}{n(\text{ cm}^{-3})} \right] \text{ cm s}^{-1} \qquad |u_H| \approx 5 \times 10^2 \left[\frac{10^{10} \text{ cm}^{-3}}{n(\text{ cm}^{-3})} \right] \text{ cm s}^{-1}$ $(h_{prom} = vertical prominence dimension)$ Loss Times for Helium and Hydrogen $\tau_{He} \approx 24 \left| \frac{h_{prom} \left(\mathbf{R}_{sun} \right)}{0.01 \ \mathbf{R}_{sun}} \right| \left| \frac{n \left(\mathrm{cm}^{-3} \right)}{10^{10} \mathrm{cm}^{-3}} \right| \text{ hours } \sim 1 \ \mathrm{day}$ Helium: $\tau_{H} \approx 520 \left[\frac{h_{prom} \left(\mathbf{R}_{sun} \right)}{0.01 \ \mathbf{R}_{sun}} \right] \left[\frac{n \left(\mathrm{cm}^{-3} \right)}{10^{10} \mathrm{cm}^{-3}} \right] \text{ hours} \sim 22 \text{ days}$ Hydrogen:

Hα (λ=656 nm) January 30, 2000, 20:11:22 UT He I (λ=1083 nm) January 30, 2000, 20:10:15 UT

Both Images from the HAO Mauna Loa Solar Observatory

Initial Comparison of H and He Observat

Hα (λ=656 nm)

H α (λ =656 nm)

He I (λ=1083 nm)

Hα (λ=656 nm)

He I (λ=1083 nm)

Hα (λ=656 nm)

He I (λ=1083 nm)

He I (λ=1083 nm)

Hα (λ=656 nm)

He I (λ=1083 nm)

Quantitative Analysis

Gilbert, Kilper, & Alexander, ApJ 671, 2007

- Study temporal and spatial Changes in the relative H and He in filaments via the absorption and He I / Ho absorption ratio
 - Chose large/stable and small/stable filaments that could be followed across the solar disk
- Used co-temporal Hα (6563 Å) and He I (10830 Å) images from the Mauna Loa Solar Observatory in 2004
- Kilper (Master's thesis) Developed an IDL code that scales and aligns each pair of images, selects the filament, and calculates the absorption ratio at every pixel

What do we expect?? Geometrical considerations: the simplest pic

• Far from disk center, one edge is at the top, and one at the bottom (where the barbs appear)

 In a relatively stable filament, He drains out of the top rapidly (*relative He deficit*)

• He draining out of bottom is replaced by He draining down from above (*no relative He cleficit*)

Diffusion timescales In the context of filament threads.....

Coronal plasma can readily ionize neutral material draining into it

 $\begin{bmatrix} L & (\mathbf{D} \) \end{bmatrix} \begin{bmatrix} n & (n \ -3) \end{bmatrix}$ **Expect very short** urs draining timescales..... However..... rs For high density filament threads, draining timescale will not be too small- it depends on vertical column

$$\tau_{He} \approx 24 \left[\frac{n_{prom} (\mathbf{R}_{sun})}{0.01 \, \mathbf{R}_{sun}} \right] \left[\frac{n (\mathrm{cm}^{-3})}{10^{10} \mathrm{cm}^{-3}} \right] \,\mathrm{hor}$$

$$\left[h - (\mathbf{R}_{sun}) \right] \left[n (\mathrm{cm}^{-3}) \right]$$

$$\tau_{H} \approx 520 \left[\frac{h_{prom} \left(\mathbf{R}_{sun} \right)}{0.01 \ \mathbf{R}_{sun}} \right] \left[\frac{n \left(\mathrm{cm}^{-3} \right)}{10^{10} \mathrm{cm}^{-3}} \right] \text{ how}$$

Ongoing related work

LWS TR&T Focused Science Team on Plasma Neutral Gas Coupling

- Chromosphere component;
 - My team: prominences
 - Phil Judge: Thermal & magnetic models for ion-neutral chromospheric studies
 - James Leake: Modeling effects of ionneutral coupling on reconnection & flux ememergence in chromosphere

LWS TR&T Focused Science Team on Plasma Neutral Gas Coupling

- Ionosphere component;
 - Geoffrey Crowley: Thermosphereionosphere
 - Jiuhou Lei: Ion-neutral processes in the equatorial F-region
 - Wenbin Wang: Global ionospheric electric field variations

Key questions to be addressed

What physical mechanism(s) set the cross-field scale of prominence

Are ion-neutral interactions responsible for vertical flows and

Approach

Use idealized studies to develop physical insight into core processes:

- Cross-field diffusion
- Thermal nonequilibrium
- Rayleigh-Taylor instability

Advance to full multidimensional modeling

Utilize observations to guide and test new physical insights

Thank you

