

Magnetospheres of "Hot Jupiters":

formation of magnetodisk current system in the escaping plasma flow of an exoplanet

M. L. Khodachenko¹, T. Zaqarashvili¹, N.V. Erkaev², S. Dyadechkin³, I.F. Shaikhislamov⁴, I.I. Alexeev⁵, E.S. Belenkaya⁵

- (1) Space Research Institute, Austrian Academy of Sciences, Graz, Austria,
- (2) Inst. of Computational Modelling, Russian Acad. Sci., Krasnoyarsk, Russia
- (3) Finnish Meteorological Inst., Helsinki, Finland
- (4) Inst. of Laser Physics, Russian Acad. Sci., Novosibirsk, Russia
- (5) Institute of Nuclear Physics, Moscow State University, Moscow, Russia,

Exoplanet – Status May 2012

- 612 Exoplanetary systems
- 767 Exoplanets
- 102 Multiple Planetary systems

• 25 planets < 5 m_{Earth}

Exoplanet evolution – mass loss of "HJs"

- Stellar X-ray and EUV induced expansion of the upper atmospheres
 - ◆ Stellar XUV luminosity → energy deposition to upper atmospheres of "HJs"

Exoplanet evolution – mass loss of "HJs"

- Soft X-ray and EUV induced expansion of the upper atmospheres
 - ⇒ high *thermal* & *non-thermal* loss rates
 - Thermal escape: particle energy > W_{ESC}
 - \rightarrow Jeans escape particles from "tails"
 - \rightarrow hydrodynamic escape all particles

Non-thermal escape:

- \rightarrow lon pick-up
- \rightarrow Sputtering (S.W. protons & ions)
- \rightarrow Photo-chemical energizing & escape

The size of magneto-

sphere is a crucial

parameter

 \rightarrow Electromagnetic ion acceleration

present Venus, Mars, or Titan

■ Magnetic moment estimation from scaling laws → range for possible M

$$\begin{split} M &\propto \rho_{\rm c}^{1/2} \ \omega r_{\rm c}^4 \\ M &\propto \rho_{\rm c}^{1/2} \ \omega^{1/2} \ r_{\rm c}^3 \ \sigma^{-1/2} \\ M &\propto \rho_{\rm c}^{1/2} \ \omega^{3/4} \ r_{\rm c}^{7/2} \ \sigma^{-1/4} \\ M &\propto \rho_{\rm c}^{1/2} \ \omega^{1/2} \ r_{\rm c}^3 \ \sigma^{-1/2} \\ M &\propto \rho_{\rm c}^{1/2} \ \omega r_{\rm c}^{7/2} \end{split}$$

Interval of possible values for planetary magnetic dipole:

J.-M. Grießmeier, A&A, 2004, 425, 753 J.-M. Grießmeier, Astrobiology, 2005,5

 $r_{\rm c}$ - radius of the dynamo region ("core radius"): $r_{\rm c} \sim M_{\rm P}^{0.75} R_{\rm P}^{-0.96}$ $\rho_{\rm c}$ - density in the dynamo region σ - conductivity in the dynamo region ω - planet angular rotation velocity > Exoplanet magnetic fields – role in planet protection

- Magnetic moment estimation from scaling laws → range for possible M
 - Limitation of *M* by tidal locking [Grießmeier, J.-M., et al., Astrobiology, 5(5), 587, 2005]

> Exoplanet magnetic fields – role in planet protection

- Non-thermal mass loss of a Hot Jupiter with a dipole type magnetosphere (a problem of protection against of strong atm. erosion)
 Khodachenko et al., PSS, 55, 631, 2007; Khodachenko et al., Astrobiology, 7, 167, 2007
 - CME induced H⁺ ion pick-up loss at 0.05 AU for 'Hot Jupiters' \rightarrow HD209458 b

Conditions	${ m S}~[{ m s}^{-1}]$	$L [g s^{-1}]$	$\mathcal{M}\left[\mathcal{M}_{\mathrm{Jup}} ight]$	$n_{\rm CME} \ [{\rm cm}^{-3}]$	$r_{\rm s}~[r_{\rm pl}]$	$\Gamma \ [M_{ m pl}]$
CME_{min}, M_{max}	9×10^{34}	$1.5{ imes}10^{11}$	0.1	6300.0	2.33	$1.56 imes 10^{-2}$
$\mathrm{CME}_{\mathrm{max}},\mathcal{M}_{\mathrm{max}}$	7×10^{37}	2×10^{13}	0.1	7.5×10^4	1.54	0.2
CME_{\min}	7.2×10^{36}	1.2×10^{13}	0.017	6300.0	1.3	0.12
$\mathrm{CME}_{\mathrm{max}}$	8.2×10^{37}	$1.37{ imes}10^{14}$	0.059	$7.5 imes 10^4$	1.3	1.43
CME_{\min}	8.4×10^{37}	1.4×10^{14}	0.012	6300.0	1.15	1.46
CME _{max}	9.5×10^{38}	$1.6{ imes}10^{15}$	0.041	$7.5 imes 10^4$	1.15	17.0
$\mathrm{CME}_{\min},\mathcal{M}_{\min}$	5.0×10^{39}	8.35×10^{15}	0.895	6300.0	$1.0 \ [0.85]$	87.0
CME _{mare} , M _{min}	$5.7{ imes}10^{40}$	9.5×10^{16}	0.005	7.5×10^4	1.0 [0.56]	990.0

Mass loss ~10¹¹ g/s even for weak CMEs & $M_{max} \implies strong magn. protection$ in reality

 Relatively large amount of observed Hot Jupiters (28%): "survival" of close-in giants indicates their efficient protection against of extreme plasma and radiation conditions

• All estimations were based on too simplified model

Magnetospheric protection of exoplanets was studied assuming a simple planetary dipole dominated magnetosphere

- → dipole mag. field $\mathbf{B} = \mathbf{B}_{dip} \sim M / r^3$ balances stellar wind ram pressure
- → big *M* are needed for the efficient protection (but tidal locking → small M → small R_s)

Specifics of close-in exoplanets → <u>new model</u>

- → strong mass loss of a planet should lead to *formation of a plasma disk* (similar to Jupiter and Saturn) → <u>Magnetodisk dominated magnitosphere</u>
- → more complete planetary magnetosphere model, including the whole complex of the magnetospheric electric current systems

- Paraboloid Magnetospheirc Model (PMM) for 'Hot Jupiters' Semi-analytical model. Key assumption: magnetopause is *approximated by* <u>paraboloid of revolution</u> along planet-star (V_{sw}) line
 - PMM considers mag. field of different current systems on the boundaries and within the boundaries of a planetary magnetopause:

Z, Rj

- → planetary *magnetic dipole*;
- → current system of *magnetotail*;
- → *magnetodisk*;
- → *magnetopause* currents;
- → magnetic field of stellar wind, partially penetrated into the magnetospheric obstacle.

I.Alexeev, 1978, Geomag.&Aeronomia, 18, 447. ⁻⁴⁰ I.Alexeev et al., 2003, Space Sci. Rev., 107, 7. I.Alexeev, E.Belenkaya, 2005, Ann. Geophys., 23, 809.

- Paraboloid Magnetospheirc Model (PMM) for a hypothetic "Hot Jupiter"
 - Magnetosphere at 0.045 AU, R_s = 8.0 R_J (tidally locked)

-100

x, [r]

-150

Paraboloid Magnetospheirc Model (PMM) for a hypothetic "Hot Jupiter"

magnetospheric parameters (estimated and calculated)

Table 4: "Hot Jupiter" magnetopause stand-off distance at substellar point R_s and its major control parameters. $R_s^{(dip+MD+tail)}$ is given by PMM taking into account screened planetary dipole, screened magnetodisk and magnetotail currents; $\tilde{R}_s^{(dip+MD)}$ is non-self-consistent estimate of R_s followed from (18); $R_s^{(dip)}$ is an estimate of R_s for the case of only a dipole magnetosphere given by (3). ¹: Tidally locked. ²: Not tidally locked. ³: Jupiter

d	$R_s^{(dip+MD+tail)}$	$\tilde{R}_s^{(dip+MD)}$	$R_s^{(dip)}$	R_A	$rac{\mathcal{M}_{MD}}{\mathcal{M}}$	ω_p	$\frac{\mathrm{d}M_p^{(th)}}{\mathrm{d}t}$
[AU]	$[r_p]$	$[r_p]$	$[r_p]$	$[r_p]$		$[\omega_J]$	$[g \ s^{-1}]$
0.045^{1}	8.0	9.27	5.76	3.1	1.64	0.118	1.06×10^{10}
0.1^{1}	8.27	9.06	6.16	4.42	1.29	0.036	$1.80 imes 10^9$
0.3^{2}	24.2	25.6	15.0	6.97	3.59	1.0	$1.84 imes 10^8$
5.2^3 (Ju	piter) 71.9	69.3	41.8	19.8	3.32	1.0	$1.0 imes 10^6$
	-						

- Formation of magnetodisk for 'Hot Jupiters'
 - "sling" model:

dipole mag. field can drive plasma in co-rotation regime only inside

"Alfvenic surface" (r < R_A); → Centrifugal

inertial escape of plasma for $r > R_A$

 <u>material-escape driven</u> *models*: → Hydrodynamic escape of plasma

- Partially ionized plasma case:
 - m.Field (planetary intrinsic m.dipole) is not frozen into plasma
 - neutral gas slips through m.Field and plasma \rightarrow charge separation Electr.field E_{cs} , ambipolar diffusion
 - Strong anisotropy of conductivity
 - Strong magnetic tension forces acting on the expanding plasma
- Similarity with intense m.tube formation in solar photosph.conv.flow:

- Hall current $J_H \sim [B \times E_{CS}]$ distorts the background m.field

- Partially ionized plasma case:
 - Generalized Ohm's law:

$$\mathbf{E} + \frac{1}{c} [\mathbf{V} \times \mathbf{B}] = \frac{\varepsilon \mathbf{G} - \nabla p_e}{en} + \frac{\mathbf{j}}{\sigma} + \frac{(1 - 2\varepsilon \xi_n)}{enc} [\mathbf{j} \times \mathbf{B}] - \frac{\xi_n}{c\alpha_n} \left\{ \xi_n \frac{[[\mathbf{j} \times \mathbf{B}] \times \mathbf{B}]}{c} - [\mathbf{G} \times \mathbf{B}] \right\}$$

where $\mathbf{V} = \xi_n \mathbf{v}_n + \xi_i \mathbf{v}_i$ - velocity of the center of mass

 $\mathbf{G} = \xi_n \nabla (p_e + p_i) - \xi_i \nabla p_n \quad \text{- pressure function}$ $\xi_n = \frac{m_n n_n}{m_n n_n + m_i n_i} \quad \text{and} \quad \xi_i = \frac{m_i n_i}{m_n n_n + m_i n_i} \quad \text{- relative densities}$ $\sigma = \frac{n_e e^2}{m_e (v'_{ei} + v'_{en})} \quad \text{- conductivity}$ $\alpha_n = m_e n_e v'_{en} + m_i n_i v'_{in} \quad \text{- momentum due to collisions with neutrals}$

$$\varepsilon = \frac{n_e m_e v_{en}}{\alpha_n} = \frac{v_{en}}{v'_{en} + (m_i/m_e)v'_{in}} \qquad \text{usually} << 1$$

- Partially ionized plasma case:
 - look for a m field configuration (B_r , B_{θ} , $B_{\varphi}=0$), co-existing with (V_r , $V_{\theta}=0$, $V_{\varphi}=0$)
 - assume axial symmetry, i.e. *d/dφ* =0 ; *p(r)*

projection of the Generalized Ohm's Law on φ -axis \Rightarrow

$$\tilde{Re_m}\tilde{V_r}(\tilde{r}\tilde{B}_{\theta}) = \left(\frac{\partial}{\partial\tilde{r}}(\tilde{r}\tilde{B}_{\theta}) - \frac{\partial\tilde{B}_r}{\partial\theta}\right) \left[\frac{\sigma_C}{\sigma - \sigma_C} + (\tilde{B}_{\theta}^2 + \tilde{B}_r^2)\right] + \beta(\tilde{r}\tilde{B}_{\theta}) \left[\frac{\partial\tilde{P}_{\Sigma}}{\partial\tilde{r}} - \frac{\zeta_n}{\xi_n}\frac{\partial\tilde{P}_n}{\partial\tilde{r}}\right]$$

where

$$\tilde{r} = r/R_0 \quad , \quad \tilde{P}_{\Sigma} = P_{\Sigma}/P_{\Sigma}^0 \quad , \quad \tilde{B}_r = B_r/B_0 \quad \text{normalized} \\ \tilde{V}_r = V_r/V_0 \quad , \quad \tilde{P}_n = P_n/P_0 \quad , \quad \tilde{B}_{\theta} = B_r/B_0 \quad \text{variables}$$

$$\begin{split} \xi_n &= \frac{\rho_n^0}{\rho_{\Sigma}^0} \quad ; \quad \zeta_n = \frac{P_n^0}{P_{\Sigma}^0} \quad ; \quad \beta = \frac{4\pi P_{\Sigma}^0}{B_0^2} \qquad \text{plasma characteristic} \\ R\tilde{e}_m &= \frac{4\pi V_0 R_0}{c^2} \underbrace{\frac{\sigma \sigma_C}{\sigma - \sigma_C}}_{\sigma - \sigma_C} \qquad \text{magnetic Reinolds number} \\ \text{in partially ionized plasma} \end{split}$$

- **Partially ionized plasma case:**
 - express **B** via vector-potential **A** (**A**_r =**0**, **A**_θ =**0**, **A**_φ), : $\frac{\mathbf{B} = [\nabla \times \mathbf{A}]}{(\triangle \mathbf{A})_{\varphi} = -\frac{4\pi}{c}J_{\varphi}}$
 - exclude J_{φ} from the Generalized Ohm's Law projection on φ -axis

$$\Rightarrow \qquad \left[\frac{\partial^2(\tilde{r}\tilde{A})}{\partial^2\tilde{r}} + \frac{1}{\tilde{r}^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial(\tilde{r}\tilde{A})}{\partial\theta}\right) - \frac{\tilde{r}\tilde{A}}{\tilde{r}^2\sin^2\theta}\right] = \\ \frac{\partial}{\partial\tilde{r}}(\tilde{r}\tilde{A})\left(\tilde{r}\tilde{A})\left(\tilde{r}\tilde{e}_m\tilde{V}_r - \beta\left[\frac{\partial\tilde{P}_{\Sigma}}{\partial\tilde{r}} - \frac{\zeta_n}{\xi_n}\frac{\partial\tilde{P}_n}{\partial\tilde{r}}\right]\right)\left[\frac{\sigma_C}{\sigma - \sigma_C} + [\tilde{B}_{\theta}^2 + \tilde{B}_r^2]\right]^{-1} \Rightarrow$$

$$\begin{bmatrix} \frac{\partial^2(\tilde{r}\tilde{A})}{\partial^2\tilde{r}} + \frac{1}{\tilde{r}^2\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial(\tilde{r}\tilde{A})}{\partial\theta}\right) - \frac{\tilde{r}\tilde{A}}{\tilde{r}^2\sin^2\theta} \end{bmatrix} = \tilde{Re_m}\tilde{V}_r \frac{\partial}{\partial\tilde{r}}(\tilde{r}\tilde{A}) \begin{bmatrix} \frac{\sigma_C}{\sigma_r - \sigma_C} + [\tilde{B}_{\theta}^2 + \tilde{B}_{r}^2] \end{bmatrix}^{-1}$$

$$(an \ be \ \sim or \ < 1) \qquad (as \ usually \ << 1) \qquad (an \ denote \ as \ \eta(r))$$

• Partially ionized plasma case:

• look for a solution in the form $rA_{\varphi} = \Phi(r, \theta) = \Phi(r) \sin \theta$

$$\Rightarrow \qquad \frac{\partial^2 \tilde{\Phi}}{\partial 2\tilde{r}} - \frac{\partial \tilde{\Phi}}{\partial \tilde{r}} \cdot [\tilde{Re}_m \eta(\tilde{r}) \tilde{V}_r] - \frac{2\tilde{\Phi}}{\tilde{r}^2} = 0$$

• asymptotic case $r \to \infty$ (>> R_0): $\qquad \frac{2\tilde{\Phi}}{\tilde{r}^2}$, $[\tilde{B}_{\theta}^2 + \tilde{B}_r^2] \to 0$,
 $\tilde{Re}_m \eta(\tilde{r}) \to \tilde{Re}_m \left[\frac{\sigma_C}{\sigma - \sigma_C}\right]^{-1} = Re_m^0$
 $\Rightarrow \qquad \frac{\partial^2 \tilde{\Phi}}{\partial 2\tilde{r}} - \frac{\partial \tilde{\Phi}}{\partial \tilde{r}} \cdot [Re_m^0 \tilde{V}_r] = 0$
• assume incompt.flow,
i.e. $\tilde{V}_r(\tilde{r}) = 1/\tilde{r}^2$
solutions: 1) $\tilde{\Phi}(\tilde{r}) = \text{Const}$
2) $\frac{\partial \tilde{\Phi}}{\partial \tilde{r}} = \Phi_0 \exp\left\{Re_m^0 \int \tilde{V}_r d\tilde{r}\right\} \Rightarrow \qquad \tilde{B}_{\theta}(\tilde{r}) = \frac{\sin \theta}{\tilde{r}} \exp\left\{-\frac{Re_m^0}{\tilde{r}}\right\}$

- Fully ionized plasma case (preliminary study case):
 - <u>numerical simulation</u> with *MHD* (Inst.of Lasr Phys. Russ.Acad. of Sciences)
 - pressure P_0 and density ρ_0 in the inner boundary
 - initial dipole magnetic field

- Fully ionized plasma case (preliminary study case):
 - <u>numerical simulation</u> with *HYB* (hybride code from Finnish Meteorological Inst.)
 - expanding H-plasma ($V = V_r r_0$)
 - initial dipole magnetic field

- Fully ionized plasma case (preliminary study case):
 - <u>laboratory plasma experiment</u> (Inst.of Laser Phys., Russ.Acad.Sci. Novosibirsk)
 - vacuum chambers (120x500 cm; 100x55 cm)
 - dipole magnetic field (5x5 cm, $M_d = 3 \times 10^5 G cm^3$); discharge plasma injectors
 - diagnostics with 1) Langmuire probe (charge dens.); 2) Faraday cap (ion flux);
 3) Rogovskii coil (electric current). All sensors are movable.
 - sequence of pulses (V = 50, 40, 30 km/s, n = 10¹² 10¹³ cm⁻³), C⁺ & 2 H⁺

- Fully ionized plasma case (preliminary study case):
 - Iaboratory plasma experiment (Inst.of Laser Phys., Russ.Acad.Sci. Novosibirsk)

Parameter	Experiment	Hot Jupiter	
planet radius R _p , cm	4.5	~10 ¹⁰	
magnetic moment, A·m ²	3 ·10 ³	10 ²⁶ -10 ²⁷	
temperature T _e , eV	~5	1-10	
plasma velocity V, km/s	30-50	≥10	
gravitational escape velocity	0	~50	
rotation velocity at R _p	0	1-10	
Alfvenic radius R _A /R _p	~3	5-10	
Reynolds number $4\pi\sigma R_A V/c^2$	~30	>>1	
Hall parameter $4\pi en_e^R R_A^V/cB$	1.5	>>1	
gyroradius R _L /R _A	~1	<<1	

- Magnetodisks of close-in giant exoplanets (Hot Jupiters) influence the structure and character of their manetospheres, leading to a new type of "magnetodisk dominated" magnetosphere.
- Extended up to (40 70) % magnetodisk magnetospheres, as compared the to dipole type ones, may efficiently protect planetary environments, even close to a host star.

Khodachenko, M.L., Alexeev, I.I., Belenkaya, E.S., Leitzinger, M., Odert, P., Grießmeier, J.-M., Zaqarashvili, T.V., Lammer, H., Rucker, H.O., Magnetospheres of 'Hot Jupiters': The importance of magnetodisks for shaping of magnetospheric obstacle, Astrophys. Journal, 2012, 744, 70. (doi:10.1088/0004-637X/744/1/70).

- Expanding plasma flow leads to deformation of the background m.dipole field and formation of an equatorial ring current system of magnetodisk
- Fundamental astrophysical object (Hot Jupiters, Heliosph.current sheet)