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Magnetospheres of “Hot Jupiters”:
formation of magnetodisk current system 

in the escaping plasma flow 
of an exoplanet
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Super-Earths ?

612 Exoplanetary systems
767 Exoplanets
102 Multiple Planetary systems

? Evolution of planets
? Formation of terrestrial

type worlds

• 58 planets <10 mEarth
• 25 planets < 5 mEarth
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Solar system
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•

usual Giants

Hot Jupiters
>0.2 MJ
< 0.3 AU

213 (28%)



● Stellar X-ray and EUV induced expansion of the upper atmospheres 

♦ Stellar XUV luminosity energy deposition to upper atmospheres of “HJs”

EXOBASE

Exoplanet evolution – mass loss of “HJs”



● Soft X-ray and EUV induced expansion of the upper atmospheres 
⇒ high thermal & non-thermal loss rates

♦ Thermal escape: particle energy > WESC

→ Jeans escape – particles from “tails”
→ hydrodynamic escape – all particles

♦ Non-thermal escape: 
→ Ion pick-up
→ Sputtering (S.W. protons & ions)
→ Photo-chemical energizing & escape
→ Electromagnetic ion acceleration

Magnetically protected planet

Early Earth present Earth

Magnetically non-protected planet
present Venus,
Mars, or Titan

Exoplanet evolution – mass loss of “HJs”

The size of magneto-
sphere is a  crucial

parameter



● Magnetic moment estimation from scaling laws  range for possible M
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rc - radius of the dynamo region (“core radius”): rc ~ MP
0.75 RP

-0.96

ρc - density in the dynamo region 
σ - conductivity in the dynamo region 
ω - planet angular rotation velocity

Interval of possible values for
planetary magnetic dipole:

Mmax … Mmin
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⇒

Exoplanet magnetic fields – role in planet protection 



HD 209458b :  M = (0.005 … 0.10) MJup

♦ Limitation of M by tidal locking   [Grießmeier, J.-M., et al., Astrobiology, 5(5), 587, 2005]

Tidal locking    ⇒ strongly reduced magnetic moments 

● Magnetic moment estimation from scaling laws  range for possible M

Exoplanet magnetic fields – role in planet protection 



● Non-thermal mass loss of a Hot Jupiter with a dipole type magnetosphere   
(a problem of protection against of strong atm. erosion)

♦ CME induced H+ ion pick-up loss at 0.05 AU for ‘Hot Jupiters’ → HD209458 b

Mass loss ~1011 g/s even for weak CMEs & Mmax ⇒ strong magn. protection in reality

Exoplanet magnetic fields – role in planet protection 

Khodachenko et al., PSS, 55, 631, 2007; Khodachenko et al., Astrobiology, 7, 167, 2007



Exoplanet magnetospheres – importance of magnetodisk

♦ Relatively large amount of observed Hot Jupiters (28%):     
”survival” of close-in giants indicates their efficient protection against of 
extreme plasma and radiation conditions

♦ All estimations were based on too simplified model
Magnetospheric protection of exoplanets was studied assuming a simple 
planetary dipole dominated magnetosphere

→ dipole mag. field   B = Bdip ~ M / r3  balances 
stellar wind ram pressure

→ big M are needed for the efficient protection
(but tidal locking small M small Rs)

♦ Specifics of close-in exoplanets new model

→ strong mass loss of a planet should lead to formation of a plasma disk
(similar to Jupiter and Saturn) Magnetodisk dominated magnitosphere

→ more complete planetary magnetosphere model, including the whole
complex of the magnetospheric electric current systems 

J.-M. Grießmeier, A&A, 2004, 425, 753



● Paraboloid Magnetospheirc Model (PMM) for ‘Hot Jupiters’
Semi-analytical model. Key assumption: magnetopause is approximated by  
paraboloid of revolution along planet-star (VSW) line

♦ PMM considers mag. field of different current systems on the boundaries 
and within the boundaries of a planetary magnetopause:

→ planetary magnetic dipole;

→ current system of magnetotail;

→ magnetodisk;

→ magnetopause currents;

→ magnetic field of stellar wind, 
partially penetrated into the
magnetospheric obstacle.

I.Alexeev, 1978, Geomag.&Aeronomia, 18, 447.
I.Alexeev et al., 2003, Space Sci. Rev., 107, 7.
I.Alexeev, E.Belenkaya, 2005, Ann. Geophys., 23, 809.

•

•
•••

• • • • • • • • • • •

•

•

•
•••••••• •• • • • • • • • •

M.Khodachenko et al., ApJ, 2011 (submitted)

Exoplanet magnetospheres – importance of magnetodisk



● Paraboloid Magnetospheirc Model (PMM) for a hypothetic “Hot Jupiter”

♦ Magnetosphere at 0.045 AU, RS = 8.0 RJ (tidally locked) 

♦ Magnetosphere at 0.3 AU,  RS = 24.2 RJ (tidally un-locked) 

Exoplanet magnetospheres – importance of magnetodisk



♦ magnetospheric parameters (estimated and calculated)

(Jupiter)

● Paraboloid Magnetospheirc Model (PMM) for a hypothetic “Hot Jupiter”

Exoplanet magnetospheres – importance of magnetodisk



Exoplanet magnetospheres – importance of magnetodisk

● Formation of magnetodisk for ‘Hot Jupiters’

♦ “sling” model:

dipole mag. field can drive plasma 
in co-rotation regime only inside  

“Alfvenic surface” (r < RA); Centrifugal
inertial escape of plasma for r>RA

♦ “material-escape driven” models: Hydrodynamic escape of plasma

(a) Fully ionized plasma outfow – Similarity with 
heliospheric current sheet (disk)

(b) Partially ionized material outflow 
Background magn.field (dipole),  
charge separation electric field,   
ambipolar diffusion, azimuth.Hall
current in equator.plane



Magnetodisk – plasma outflow as a driver 

● Partially ionized plasma case: 

♦ m.Field (planetary intrinsic m.dipole) is not frozen into plasma

♦ neutral gas slips through m.Field and plasma → charge separation
Electr.field Ecs, ambipolar diffusion

♦ Strong anisotropy of conductivity

♦Strong magnetic tension forces acting on the expanding plasma

● Similarity with intense m.tube formation in solar photosph.conv.flow: 
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- Hall current JH ~ [B x ECS] distorts the background m.field



Magnetodisk – plasma outflow as a driver 

● Partially ionized plasma case: 

♦ Generalized Ohm‘s law:

where - velocity of the center of mass

and - relative densities

- conductivity

- pressure function

- momentum due to collisions with neutrals

usually << 1



Magnetodisk – plasma outflow as a driver 

● Partially ionized plasma case: 

♦ look for a m.field configuration (Br, Bθ, Bφ=0), co-existing with (Vr, Vθ=0, Vφ=0)

♦ assume axial symmetry, i.e. d/dφ =0 ; p(r)

projection of the Generalized Ohm‘s Law on φ-axis ⇒

where

; ; normalized
variables

; ; plasma characteristic
parameters

magnetic Reinolds number
in partially ionized plasma



Magnetodisk – plasma outflow as a driver 

● Partially ionized plasma case: 

♦ exclude Jφ from the Generalized Ohm‘s Law projection on φ-axis

♦ express B via vector-potential A (Ar =0, Aθ =0, Aφ), :

⇒

can be ~ or < 1 usually << 1 denote as η(r)

⇒



Magnetodisk – plasma outflow as a driver 

● Partially ionized plasma case: 

♦ look for a solution in the form rAφ= Φ(r,θ) = Φ(r) Sin θ

♦ asymptotic case r →∞ ( >> R0 ) :               ,                       → 0 , 

→ =

⇒

⇒

solutions:  1) = Const

2) ⇒

♦ assume incompr.flow, 

i.e.



● Fully ionized plasma case (preliminary study case): 

Magnetodisk – plasma outflow as a driver 

♦ numerical simulation with MHD (Inst.of Lasr Phys. Russ.Acad. of Sciences)
- pressure P0 and density ρ0 in the inner boundary
- initial dipole magnetic field
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Magnetodisk – plasma outflow as a driver 

● Fully ionized plasma case (preliminary study case): 

♦ numerical simulation with HYB (hybride code from Finnish Meteorological Inst.)
- expanding H-plasma (V = Vr r0)
- initial dipole magnetic field
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Magnetodisk – plasma outflow as a driver 

● Fully ionized plasma case (preliminary study case): 

♦ laboratory plasma experiment (Inst.of Laser Phys., Russ.Acad.Sci. Novosibirsk)
- vacuum chambers (120x500 cm; 100x55 cm)
- dipole magnetic field (5x5 cm, Md = 3 x 105 G cm3); discharge plasma injectors
- diagnostics with 1) Langmuire probe (charge dens.); 2) Faraday cap (ion flux);

3) Rogovskii coil (electric current). All sensors are movable.
- sequence of pulses (V = 50, 40, 30 km/s, n = 1012 - 1013 cm-3), C+ & 2 H+



Magnetodisk – plasma outflow as a driver 

● Fully ionized plasma case (preliminary study case): 

♦ laboratory plasma experiment (Inst.of Laser Phys., Russ.Acad.Sci. Novosibirsk)

<<1~1gyroradius RL/RA

>>11.5Hall parameter 4πeneRAV/cB

>>1~30Reynolds number 4πσRAV/c2

5-10~3Alfvenic radius RA/Rp

1-100rotation velocity at Rp

~500gravitational escape velocity

≥1030-50plasma velocity V, km/s

1-10~5temperature Te, eV

1026-10273⋅103magnetic moment, A⋅m2

~10104.5planet radius Rp, cm 

Hot JupiterExperimentParameter



Conclusions

♦ Magnetodisks of  close-in giant exoplanets (Hot Jupiters)  influence
the structure and character of their manetospheres, leading to a new
type of „magnetodisk dominated“ magnetosphere.

♦ Extended up to (40 – 70) % magnetodisk magnetospheres, as compared
the to dipole type ones, may efficiently protect planetary environments, 
even close to a host star. 

Khodachenko, M.L., Alexeev, I.I., Belenkaya, E.S., Leitzinger, M., Odert, P., 
Grießmeier, J.-M., Zaqarashvili, T.V., Lammer, H., Rucker, H.O., Magneto-
spheres of 'Hot Jupiters':  The  importance  of magnetodisks for shaping of 
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(doi:10.1088/0004-637X/744/1/70).

♦ Expanding plasma flow leads to deformation of the background m.dipole
field and formation of an equatorial ring current system of magnetodisk

♦ Fundamental astrophysical object (Hot Jupiters, Heliosph.current sheet)


