

Damping of MHD waves in the solar partially ionized plasmas

M. L. Khodachenko

Space Research Institute, Austrian Academy of Sciences, Graz, Austria

- Magnetic field plays the key role in the solar activity:
 - It gives the origin of solar active regions and their internal structure
 - It controls the dynamics of solar plasma and appears as an important factor of solar energetic phenomena (flares, CMEs, prominences)
 - It structurizes the solar atmosphere (loops, filaments)
 - It channels the energy from the convection zone and photosphere towards the upper solar atmosphere (MHD & sound waves

• MHD waves as a heating source for outer solar atmosphere

- Damping of MHD waves is applied for explanation of
 - Non-uniform heating of chromospheric foot-points of magnetic loops and energy deposition in solar plasmas (slow m/s. w.)
 - Driver for solar spicules (A.w. and fast m/s. w.)
 - Damping of coronal loop oscillations (leakage of A.w.energy through the foot points)
 - Damped oscillations of prominences (damped A.w. and m/s w.)

- Different physical nature of the viscous and frictional damping:
 - The forces associated with the viscosity and thermal conductivity have purely kinetic origin and are caused by momentum transfer during the thermal motion of particles
 - The collisional friction forces appear due to the average relative motion of the plasma species as a whole

• MHD waves damping in a linear approximation

(approach by Braginskii, S.I., Transport processes in plasma, in: Reviews of plasma phys., 1, 1965)

- → Calculation of energy decay time using the local heating rates: Q_{frict} , Q_{visc} (= ½ $\pi_{\alpha\beta}W_{\alpha\beta}$), Q_{therm} (= $q \& T/T_{\theta}$), etc.
- → The decay of wave amplitude is described by complex frequency: $\omega i\omega\delta$ where δ (<<1) is the logarithmic damping decrement

 \rightarrow The energy \mathcal{E} decays as: $e^{-t/\tau}$, where $\tau = (2 \omega \delta)^{-1}$ is a wave damping time

 $\rightarrow 2 \omega \delta = (1/\epsilon) T_{\theta} \theta = (1/\epsilon) \Sigma Q_i$, where θ is the entropy production rate

MHD waves damping

Collisional friction dissipation C Joule dissipation:

Fully ionized plasma

$$Q_{\text{frict}} = Q_{\text{Joule}} = \frac{j_{\parallel}^2}{\sigma_{\parallel}} + \frac{j_{\perp}^2}{\sigma_{\perp}}$$

 σ and σ_{\perp} are the components of electro-conductivity relative *B*

$$\sigma \approx 2 \sigma_{\perp}$$
 in plasma with Z = 1
(i.e., $q_i/e = Z$)

Partially ionized plasma

$$Q_{\text{frict}} = \frac{j^2}{\sigma} + \frac{1}{\alpha_n} \left(\frac{\xi_n}{c} [\boldsymbol{j} \times \boldsymbol{B}] - \boldsymbol{G} \right)^2$$

$$G = \xi_n \nabla (p_e + p_i) - \xi_i \nabla p_n$$

$$\alpha_n = m_e n_e \nu'_{en} + m_i n_i \nu'_{in}$$

$$\xi_i = \frac{m_i n_i}{m_n n_n + m_i n_i}, \ \xi_n = \frac{m_n n_n}{m_n n_n + m_i n_i}$$

$$v'_{kl} = rac{m_l}{m_l + m_k} v_{kl}$$
, $k = e, i$; $l = i, n$

when (A.w. & f. ms.w.)

$$Q_{\text{frict}} = \tilde{Q}_{\text{Joule}} = \frac{j_{\parallel}^2}{\sigma} + \frac{j_{\perp}^2}{\sigma_{\text{C}}} \quad \sigma_{\text{C}} = \frac{\sigma}{1 + \frac{\xi_{\text{n}}^2 B_0^2}{\alpha_{\text{n}} c^2} \sigma}$$

• Linear damping <u>due to friction</u> (*Braginskii*, 1965):

• Linear damping <u>due to viscosity</u> (*Braginskii*, 1965):

The same expressions as in fully ionized plasma,

$$\rightarrow \text{Alfvén wave (A.w.)} \quad 2\omega \delta_{\text{visc}}^{\text{A.w.}} \equiv \frac{1}{\tau_{\text{visc}}^{\text{A.w.}}} = \frac{1}{\rho_0} \left(\eta_1 k_\perp^2 + \eta_2 k_{\parallel}^2 \right)$$

 $\rightarrow \textbf{Fast magnetosonic wave (f. ms.w.)} \ 2\omega \delta_{\text{visc}}^{\text{f.ms.w.}} \equiv \frac{1}{\tau_{\text{visc}}^{\text{f.ms.w.}}} = \frac{1}{\rho_0} \left[\left(\frac{\eta_0}{3} + \eta_1 \right) k_{\perp}^2 + \eta_2 k_{\parallel}^2 \right]$

 $\rightarrow \text{Acoustic (or sound) wave (s.w.)} \qquad 2\omega \delta_{\text{visc}}^{\text{s.w.}} \equiv \frac{1}{\tau_{\text{visc}}^{\text{s.w.}}} = \frac{1}{\rho_0} \left(\frac{4}{3} \eta_0 k_{\parallel}^2 + \eta_2 k_{\perp}^2 \right)$

but with ρ_0 and viscosity coefficients, η_0 , η_1 , η_2 , modified to include neutrals

- In weakly ionized plasma $\eta_{0,1,2} \sim n_n T \tau_n$ (i.e., isotropy), $\tau_n = (v_{ni} + v_{nn})^{-1}$
- for $n_i/n_n \ge 1$ ion viscosity still dominates, but $\tau_i = (v_{ii} + v_{ij})^{-1}$

$$\eta_0 = 0.96 n_i T_i \tau_i \, \mathcal{D} \eta_2 = n_i T_i \tau_i \frac{\left(\frac{6}{5}(\omega_i \tau_i)^2 + 2.23\right)}{(\omega_i \tau_i)^4 + 4.03(\omega_i \tau_i)^2 + 2.33} \, \mathcal{D} \eta_1 = \eta_2 \, (\omega i \to 2\omega i)$$

MHD waves damping

• Linear damping due to thermal conductivity (Braginskii, 1965):

The same expressions as in fully ionized plasma,

 \rightarrow Alfvén wave (A.w.) No osc. of ρ and T \rightarrow no thermal cond. damping

$$\rightarrow \text{Fast magnetosonic wave (f. ms.w.)} \ 2\omega \delta_{\text{therm}}^{\text{f.ms.w.}} \equiv \frac{1}{\tau_{\text{therm}}^{\text{f.ms.w.}}} = \frac{(\gamma - 1)^2 T k_{\perp}^2}{\rho_0 V_A^2 k^2} \left(\exp k_{\parallel}^2 + \exp_{\perp} k_{\perp}^2 \right)$$
$$\rightarrow \text{Acoustic (or sound) wave (s.w.)} \ 2\omega \delta_{\text{therm}}^{\text{s.w.}} \equiv \frac{1}{\tau_{\text{therm}}^{\text{s.w.}}} = \frac{(\gamma - 1)^2 T}{\rho_0 C_s^2} \left(\exp k_{\parallel}^2 + \exp_{\perp} k_{\perp}^2 \right)$$

but with $ho_{ heta}$ and therm.cond. coefficients x_{\parallel}, x_{\perp} modified to include neutrals

- In weakly ionized plasma $\varkappa \sim n_n T \tau_n / m_n$ (i.e., isotropy), $\tau_n = (v_{ni} + v_{nn})^{-1}$
- for $n_i/n_n \ge 1$ ion effects still dominate, but $\tau_i = (v_{ii} + v_{ij})^{-1}$
- therm.cond along B is mainly due to electrons, but $\tau_e = (v_e + v_{en})^{-1}$

- Specifics of the case:
 - → Longitudinal propagation of waves: $k_{\text{fm}} \oplus 0$ and $k_{\gamma} = 0$ (*m. flux tubes in photosphere/chromosphere serve as a wave-guide*)
 - → Transverse propagation of waves: $k_{\gamma} \oplus 0$ and $k_{\underline{m}} = 0$ (*m.of interest for waves in prominences*)
 - → In the case $k_{\text{fm}} \oplus 0$; $k_{\gamma} = 0$ A.w. & f.ms.w. are <u>equally damped</u> due to <u>viscous</u>, as well as due to <u>collision</u> dissipation
 - → In the partially ionized plasma for <u>collision</u> damping of longitudinal $(k_{\text{fm}} \oplus 0, k_{\gamma} = 0)$ A.w. & f.ms. waves $\sigma \notin \sigma_{C}$

$$\frac{\sigma}{\sigma_{\rm C}} = 1 + \xi_{\rm n}^2 \frac{B_0^2 \sigma}{\alpha_{\rm n} c^2} \approx 1 + \xi_{\rm n}^2 \frac{\omega_{\rm e} \omega_{\rm i}}{\max\{\nu_{\rm ei}', \nu_{\rm en}'\}\nu_{\rm in}'} \gg 1.$$

Application to the Sun

Specifics of the case:

in a strong enough m.field $\sigma >> \sigma_C \rightarrow$ stronger collision damp. in p.i.p.

- Low solar atmosphere:
 - Longitudinally propagating $(k_{\underline{m}} \oplus 0 \text{ and } k_{\gamma} = 0) A.w. \& f.ms.w.$

 \rightarrow no thermal conductivity damping of A.w. & f.ms.w. for $k_{\text{fm}} \oplus 0$; $k_{\gamma} = 0$

• Low solar atmosphere:

- Longitudinally propagating $(k_{\text{m}} \oplus 0 \text{ and } k_{\gamma} = 0)$ s.w.
 - → (1) collisional damping vs.
 viscous damping:

$$\left. \frac{\tau_{\text{frict}}}{\tau_{\text{visc}}} \right|_{\text{s.w.}(\parallel)} = \frac{4}{3} \frac{\eta_0 \alpha_n}{\xi_n^2 C_s^2 \rho_0^2} \frac{n_0^2}{n_e^2}$$

 → (2) collisional damping vs. thermal cond. damping:

$$\frac{\tau_{\text{frict}}}{\tau_{\text{therm}}}\bigg|_{\text{s.w.}(\parallel)} = \frac{(\gamma - 1)^2}{\gamma^2} \frac{\alpha_n \alpha_{\parallel}}{\xi_n^2 T n_e^2}$$

- $\rightarrow \quad \text{(3) viscous damping vs.} \\ \text{therm. cond. damping:} \quad \left. \frac{\tau_{\text{visc}}}{\tau_{\text{therm}}} \right|_{\text{s.w.}(\parallel)} = \frac{3(\gamma 1)^2}{4} \frac{T æ_{\parallel}}{C_s^2 \eta_0}$
- Coll. & visc. damping of s.w. in the chromosphere are similar, with slight domination of the coll. damp.

Therm. cond. damping is more efficient

• Low solar atmosphere:

• Longitudinally propagating $(k_{\underline{m}} \oplus \theta \text{ and } k_{\gamma} = \theta)$ s.w.

 Coll. & visc. damping of s.w. in the chromosphere are similar, with slight domination of the coll. damp.

Therm. cond. damping is more efficient

- Solar prominences: $T=(6...10) \otimes 10^3 K$; $n=(1...50) \otimes 10^{-10} cm^{-3}$; $n_n/n=0.05...1$, $B_0 \sim 10 G$
 - Longitudinally propagating $(k_{\underline{m}} \oplus 0 \text{ and } k_{\gamma} = 0) A.w., f.ms.w. \& s.w.$

Calculations with $B_0=10G$, $n_n/n=1$

◆ for longitudinally prop.
 A.w., *f.ms.w*, and *s.w.* the coll.damp. dominates the visc. & therm.cond.damp.

for *s.w.* the therm.cond.
 damping dominates the viscosity damping

- Solar prominences: $T = (6...10) \otimes 10^3 K$; $n = (1...50) \otimes 10^{-3}$; $n_n/n = 0.05...1$, $B_0 \sim 10 G$
 - Transverse propagating $(k_{\gamma} \oplus 0 \text{ and } k_{\underline{m}} = 0)$ f.ms.w. :

 $\rightarrow \quad \text{(3) viscous damping vs.} \quad \frac{\tau_{\text{visc}}}{\tau_{\text{therm}}} \bigg|_{\text{f.ms.w.}(\perp)} = \frac{(\gamma - 1)^2 T \boldsymbol{\varpi}_{\perp}}{V_A^2 (\eta_0 / 3 + \eta_1)}$

- Solar prominences: $T = (6...10) \otimes 10^3 K$; $n = (1...50) \otimes 10^{-10} cm^{-3}$; $n_n/n = 0.05...1$, $B_0 \sim 10 G$
 - Transverse propagating $(k_{\gamma} \oplus 0 \text{ and } k_{\underline{m}} = 0)$ f.ms.w. :

- Solar prominences: $T = (6...10) \otimes 10^3 K$; $n = (1...50) \otimes 10^{-3}$; $n_n/n = 0.05...1$, $B_0 \sim 10 G$
 - Transverse propagating $(k_{\gamma} \oplus 0 \text{ and } k_{\underline{m}} = 0)$ s.w. :
 - (1) collisional damping vs. $\frac{\tau_{\text{frict}}}{\tau_{\text{visc}}}\Big|_{\text{s.w.}(\perp)} \approx \frac{\eta_2 \alpha_n}{\xi_n^2 C_s^2 \rho_0^2} \frac{n_0^2}{(n+n_n)^2} < 1$ = $\frac{3}{4} \frac{\eta_2}{\eta_0} \left(1 + \frac{n_n}{n}\right)^{-2} \frac{\tau_{\text{frict}}}{\tau_{\text{visc}}}\Big|_{\text{s.w.}(\parallel)}$ \rightarrow $\rightarrow \quad \textbf{(2) collisional damping vs.} \left. \frac{\tau_{\text{frict}}}{\tau_{\text{therm}}} \right|_{\text{s.w.}(\perp)} \approx \frac{(\gamma - 1)^2}{\gamma^2} \frac{\alpha_n \alpha_\perp}{\xi_n^2 T (n + n_n)^2} < 1$ $= \frac{1}{(1+n_n/n)} \frac{\underline{x}_{\perp} \tau_{\text{frict}}}{\underline{x}_{\parallel} \tau_{\text{therm}}} \Big|_{s.w.(\parallel)}$ <1 $\frac{\tau_{\text{visc}}}{\tau_{\text{therm}}}\Big|_{\text{s.w.}(\perp)} = \frac{(\gamma - 1)^2 T \varpi_{\perp}}{C_s^2 \eta_2} = \frac{4}{3} \frac{\eta_0}{\eta_2} \frac{\varpi_{\perp}}{\varpi_{\parallel}} \frac{\tau_{\text{visc}}}{\tau_{\text{therm}}}\Big|_{\text{s.w.}(\parallel)}$ (3) viscous damping vs. \rightarrow therm. cond. damping:

- Solar prominences: $T = (6...10) \otimes 10^3 K$; $n = (1...50) \otimes 10^{-10} cm^{-3}$; $n_n/n = 0.05...1$, $B_0 \sim 10 G$
 - Transverse propagating $(k_{\gamma} \oplus 0 \text{ and } k_{\underline{m}} = 0)$ s.w. :

- Solar prominences: $T = (6...10) \otimes 10^3 K$; $n = (1...50) \otimes 10^{-10} cm^{-3}$; $n_n/n = 0.05...1$, $B_0 \sim 10 G$
 - Transverse propagating $(k_{\gamma} \oplus 0 \text{ and } k_{\underline{m}} = 0)$ s.w. :

- The collisional friction damping of MHD waves in the solar partially ionized plasmas is usually more important than the viscous and thermal conductivity damping.
- At the same time viscous damping of acoustic waves in some cases (long.prop. in prominences and low atmosphere) can be less efficient then their damping due to the thermal conductivity effects.
- In the middle chromosphere all damping mechanisms are approximately of the same efficiency.
- The expressions used above are valid only if damping decrements $\delta \ll 1$ (linear approximation). Thus, the performed analysis is correct only for waves with frequency $f = \omega/(2\pi) \ll f_c$.
- Depending on plasma parameters, dissipation mechanism, particular MHD mode, the critical frequency f_c varies from 0.1 Hz till 10⁶ Hz.