

Overview of equations and assumptions

Elena Khomenko, Manuel Collados, Antonio Díaz

Departamento de Astrofísica, Universidad de La Laguna and Instituto de Astrofísica de Canarias (IAC),

La Laguna, Tenerife (Spain).

http://www.iac.es/proyecto/spia/

NXMN NIBIX N NXM XXX NN XXX NKXX N KXX N KXX

Degree of Ionization in VAL-C model

KAKIN MIXIN MANAN MAKAN NO KAMPANI MANINI KARA

STRUCTURE OF THE SOLAR CHROMOSPHERE. III. MODELS OF THE EUV BRIGHTNESS COMPONENTS OF THE QUIET SUN

J. E. VERNAZZA¹, E. H. AVRETT, AND R. LOESER Harvard-Smithsonian Center for Astrophysics

	h	m	τ_{500}	Т	V	n _H	n _e	P _{total}	Pgas	σ
	(km)	(g cm ⁻²)		(K) (I	km s⁻¹)	(cm ⁻³)	(cm ⁻³)	(dyn cm ⁻²	P _{total}	(g cm ⁻³)
Chromosphere										
6 7 8 9 10	2271 2267 2263 2255 2230	5.413-06 5.427-06 5.443-06 5.476-06 5.583-06	5.234-08 5.657-08 6.124-08 7.110-08 1.030-07	32000 28000 25500 24500 24200	9.71 9.70 9.68 9.64 9.49	1.378+10 1.567+10 1.718+10 1.797+10 1.862+10	1.498+10 1.677+10 1.812+10 1.881+10 1.943+10	1.483-01 1.487-01 1.491-01 1.500-01 1.530-01	.8976 .8840 .8738 .8698 .8718	3.222-14 3.665-14 4.017-14 4.203-14 4.355-14
Photosphere										
41 42 43 44	555 515 450 350	3.270-02 4.878-02 9.378-02 2.481-01	1.456-04 3.014-04 1.017-03 5.626-03	4230 4170 4220 4465	.70 .60 .53 .52	1.382+15 2.096+15 3.989+15 9.979+15	1.733+11 2.495+11 4.516+11 1.110+12	8.958+02 1.336+03 2.569+03 6.798+03	.9912 .9934 .9949 .9954	3.232-09 4.902-09 9.327-09 2.334-08
45	250	6.172-01	2.670-02	4780	.63	2.315+16	2.674+12	1.691+04	.9936	5.413-08

Degree of Ionization in VAL-C model

KAKIN N KIKIN KINAN NAKAN NO KAMPAN KABINI KIKIN KIRI

NXM NIBIX N NXXX NXX NN XXX NKXX N KXX N KXX

Multi-fluid approximation

MANY KANYA KAYAN KOZAMANYA MUKANYA

Relative motions between electrons, ions and neutrals (Hall effect and Ambipolar diffusion) produce additional important sources of heating.

Additional diffusitivy due to collisions between ions and neutrals is 5-6 orders of magnitude larger than the usual Coulomb diffusivity (Reynolds number around 1-10).

Characteristic scales in a partially ionized plasma depend on the degree of ionization reaching 10 km and 1 sec for the solar atmosphere.

Important for magnetized photosphere and chromosphere

Depending on scales of phenomena to study, and number of particles.

Events on scales below 10 km & 1 sec and chromospheric density & neutral fraction probably require multi-fluid approach.

Equations for individual species

COLX N NX N N X YANN N XXXX N YO X DX MAN X MANN X YAN

Mass conservation

$$\frac{\partial \rho_{\alpha}}{\partial t} + \nabla (\rho_{\alpha} \vec{u}_{\alpha}) = S_{\alpha} \begin{cases} \alpha = e \text{ electrons} \\ \alpha = i \text{ ions} \\ \alpha = n \text{ neutral hydrogen} \end{cases}$$

Momentum conservation

$$\rho_{\alpha} \frac{D\vec{u}_{\alpha}}{Dt} = q_{\alpha} n_{\alpha} (\vec{E} + \vec{u}_{\alpha} \times \vec{B}) + \rho_{\alpha} \vec{g} - \nabla \mathbf{\hat{p}}_{\alpha} + \vec{R}_{\alpha} - \vec{u}_{\alpha} S_{\alpha}$$

Energy conservation

$$\frac{3}{2}\frac{Dp_{\alpha}}{Dt} + \frac{3}{2}p_{\alpha}(\vec{\nabla}\vec{u}_{\alpha}) + (\hat{\mathbf{p}}_{\alpha}\vec{\nabla})\vec{u}_{\alpha} + \vec{\nabla}\vec{q}_{\alpha} = M_{\alpha} - \vec{u}_{\alpha}\vec{R}_{\alpha} + \frac{1}{2}u_{\alpha}^{2}S_{\alpha}$$

NXMN NIBIX N NXMN XXX NN XXX NM XXX N K X N K X N

Combined quasi-MHD equations

KAKINAN XIXAN KANARAN KOKAN KOKAN KIKAN KIKAN KIKAN

electrons +ions +neutral hydrogen

Mass conservation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \left(\rho \vec{u} \right) = S$$

Momentum conservation

$$\rho \frac{D\vec{u}}{Dt} = \vec{J} \times \vec{B} + \rho \vec{g} - \vec{\nabla} \hat{\mathbf{p}} - \vec{u}S$$

Energy conservation

$$\frac{3}{2}\frac{Dp}{Dt} + \frac{3}{2}p\vec{\nabla}\vec{u} + \hat{\mathbf{p}}\vec{\nabla}\vec{u} + \vec{\nabla}\vec{q} = \vec{J}\vec{E}^* + M + \frac{1}{2}u^2S$$

NXMN NIBIX N NXMX XXX NN XXX NMXXX N KXX N KXX

Definitions

KAKIN MIXIN MAJARA MAKAKIN KO KAMBAJ KIMBINI KI KO K

see Bittencourt (1986)

$$\vec{u} = \frac{\rho_n \vec{u}_n + \rho_i \vec{u}_i + \rho_e \vec{u}_e}{\rho}$$

Center of mass velocity

 $\hat{\mathbf{p}} = \sum_{\alpha=n,i,e} \hat{\mathbf{p}}_{\alpha} + \sum_{\alpha=n,i,e} \rho_{\alpha} \vec{w}_{\alpha} \otimes \vec{w}_{\alpha} \qquad \begin{array}{l} \text{Kinetic pressure} \\ \text{tensor} \end{array}$

$$\vec{w}_{\alpha} = \vec{u}_{\alpha} - \vec{u}$$
 Diffusion velocity

NXANN NIBIX N MXAN XIX NN XXX NAXX XX N KIXAN KIXA

Combined quasi-MHD equations

electrons +ions +neutral hydrogen

NXMN NIBIX N NXMN XXX NN XXX NM XXX N K X N K X N

Combined quasi-MHD equations

KAKINAN XIXAN KANARAN KOKAN KOKAN KIKAN KIKAN KIKAN

electrons +ions +neutral hydrogen

Mass conservation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \left(\rho \vec{u} \right) = 0$$

Momentum conservation

$$o\frac{D\vec{u}}{Dt} = \vec{J} \times \vec{B} + \rho \vec{g} - \vec{\nabla} p$$

Energy conservation

$$\frac{3}{2}\frac{Dp}{Dt} + \frac{5}{2}p\vec{\nabla}\vec{u} = \vec{J}\vec{E}^*$$

NIXMN NIBIN N NXN NXIX NN XXX NM XXX N KIXN KIXN

Combined quasi-MHD equations

electrons +ions +neutral hydrogen

Mass conservation

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \left(\rho \vec{u} \right) = 0$$

Momentum conservation

$$\rho \frac{D\vec{u}}{Dt} = \vec{J} \times \vec{B} + \rho \vec{g} - \vec{\nabla} p$$

Generalized Ohm's law: all terms

KAKINAN KIKAN KATAN NOKAN KOKAN KOKAN

Ohmic term Hall term Ambipolar term

$$\vec{E}^* = \left[\vec{E} + \vec{u} \times \vec{B}\right] = \eta \vec{J} + \eta_H \left[\vec{J} \times \vec{b}\right] - \eta_A \left[(\vec{J} \times \vec{b}) \times \vec{b}\right]$$

$$+ \frac{\varepsilon \vec{G} - \vec{\nabla} \hat{\mathbf{p}_e}}{en_e} + \frac{\xi_n}{\alpha_n} \left[\vec{G} \times \vec{B}\right] + \frac{\xi_n^2 \rho_e}{\alpha_n} \vec{g} \times \vec{B} + \frac{m_e}{e} (1 + \xi_n \epsilon) \vec{g}$$

Biermann battery term ...

Generalized Ohm's law: all terms

$$\vec{E}^* = \left[\vec{E} + \vec{u} \times \vec{B}\right] = \eta \vec{J} + \eta_H \left[\vec{J} \times \vec{b}\right] - \eta_A \left[(\vec{J} \times \vec{b}) \times \vec{b}\right] + \frac{\varepsilon \vec{G} - \vec{\nabla} \hat{\mathbf{p}_e}}{en_e} + \frac{\xi_n}{\alpha_n} \left[\vec{G} \times \vec{B}\right] + \frac{\xi_n^2 \rho_e}{\alpha_n} \vec{g} \times \vec{B} + \frac{m_e}{e} (1 + \xi_n \epsilon) \vec{g}$$

Definitions:

 $\vec{G} = \xi_n \vec{\nabla} (\hat{\mathbf{p}}_i + \hat{\mathbf{p}}_e) - \xi_i \vec{\nabla} \hat{\mathbf{p}}_n \quad \text{- partial pressures term}$ neutral fraction ion fraction $\vec{b} \quad \text{unity vector in the}_{\text{direction of mag. field;}} \quad \left[\alpha_n = \rho_i \nu_{in} + \rho_e \nu_{en} \text{ collisions} \right]$

Generalized Ohm's law: all terms

$$\vec{E}^* = \left[\vec{E} + \vec{u} \times \vec{B}\right] = \eta \vec{J} + \eta_H \left[\vec{J} \times \vec{b}\right] - \eta_A \left[(\vec{J} \times \vec{b}) \times \vec{b}\right] + \frac{\varepsilon \vec{G} - \vec{\nabla} \hat{\mathbf{p}_e}}{en_e} + \frac{\xi_n}{\alpha_n} \left[\vec{G} \times \vec{B}\right] + \frac{\xi_n^2 \rho_e}{\alpha_n} \vec{g} \times \vec{B} + \frac{m_e}{e} (1 + \xi_n \epsilon) \vec{g}$$

Assumptions:

Neglect electron inertia and momentum terms;

Quasi-neutrality;

Same temperatures of all species;

Time variations of diffusion velocity \vec{w}_{α} are neglected;

Pressure tensor has to be assumed scalar.

Generalized Ohm's law

KAKIN N KIKIN KUKAN NAKAKIN NO KUKAN KIKIN NUKAN KUKAN

spatial and temporal scales

NIXMN NIBIXN NIXMN XIXNN XXXNN XXXN RIXN RIXN

Two-fluid equations: definitions

KAKIN MIKIN KYARI MARAN NO KARIMAN KIKIN KAO

see Bittencourt (1986)

$$ec{u}_c = rac{
ho_i ec{u}_i +
ho_e ec{u}_e}{
ho_i +
ho_e}$$
 Center of mass velocity of charges

$$\mathbf{\hat{p}}_{ie} = \mathbf{\hat{p}}_i + \mathbf{\hat{p}}_e \sum_{\alpha=i,e} \rho_{\alpha} \vec{w_{\alpha}} \otimes \vec{w_{\alpha}}$$
 lon-electron kinetic pressure tensor

$$\vec{w_i} = \vec{u_i} - \vec{u_c}$$
 Diffusion velocities of charges
 $\vec{w_e} = \vec{u_e} - \vec{u_c}$

Two-fluid equations

see Bittencourt (1986)

c = (e + i) = (electrons + ions)

$$\frac{\partial \rho_c}{\partial t} + \vec{\nabla} \left(\rho_c \vec{u}_c \right) = S_{ie}$$

Momentum conservation for charged species

Mass conservation for

charged species

0

$$\frac{\partial \rho_c \vec{u}_c}{\partial t} + \vec{\nabla} (\rho_c \vec{u}_c \otimes \vec{u}_c) = [\vec{J} \times \vec{B}] + \rho_c \vec{g} - \nabla \hat{\mathbf{p}}_{ie} + \vec{R}_{ie}$$

Energy conservation for charged species

$$rac{3}{2}rac{\partial p_{ie}}{\partial t}$$

$$+ \frac{3}{2} \vec{\nabla} (\vec{u}_c p_{ie}) + (\hat{\mathbf{p}}_{ie} \vec{\nabla}) \vec{u}_c + \vec{\nabla} \vec{q}_{ie} = \\ = \vec{J} [\vec{E} + \vec{u}_c \times \vec{B}] + \frac{1}{2} u_c^2 S_{ie} + \vec{u}_c \vec{R}_{ie} + M_{ie}$$

Two-fluid equations

see Bittencourt (1986)

 M_{ie}

c = (e + i) = (electrons + ions)

$$\frac{\partial \rho_c}{\partial t} + \vec{\nabla} \left(\rho_c \vec{u}_c \right) = \mathbf{y}_e$$

Momentum conservation for charged species

Mass conservation for

charged species

$$\frac{\partial \rho_c \vec{u}_c}{\partial t} + \vec{\nabla} (\rho_c \vec{u}_c \otimes \vec{u}_c) = [\vec{J} \times \vec{B}] + \rho_c \vec{g} - \nabla \hat{\mathbf{p}}_{ie} + \vec{R}_{ie}$$

Energy conservation for charged species

$$\frac{3}{2}\frac{\partial p_{ie}}{\partial t}$$

+

$$\frac{3}{2}\vec{\nabla}(\vec{u}_c p_{ie}) + (\hat{\mathbf{p}}_{ie}\vec{\nabla})\vec{u}_c + \vec{\nabla}\vec{q}_{ie} = \vec{J}[\vec{E} + \vec{u}_c \times \vec{B}] + \frac{1}{2}u_c^2\mathcal{S}_{ie} + \vec{u}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_c\vec{R}_c\vec{R}_{ie} + \vec{J}_c\vec{R}_$$

 $\mathbf{\hat{p}}_{ie} = p_{ie}$

Two-fluid equations

Mass conservation for charged species

$$\vec{R_{ie}} = -\alpha_n(\vec{u_c} - \vec{u_n}) - \frac{\rho_n}{\rho_c}\frac{\vec{J}}{e}(m_e\nu_{ni} - m_i\nu_{ne})$$

$$\frac{\partial \rho_c}{\partial t} + \vec{\nabla} \left(\rho_c \vec{u}_c \right) = 0$$

Momentum conservation for charged species

$$\frac{\partial \rho_c \vec{u}_c}{\partial t} + \vec{\nabla} (\rho_c \vec{u}_c \otimes \vec{u}_c) = [\vec{J} \times \vec{B}] + \rho_c \vec{g} - \nabla p_{ie} + \vec{R}_{ie}$$

Energy conservation for charged species

$$\frac{3}{2}\frac{Dp_{ie}}{Dt} + \frac{5}{2}(p_{ie}\vec{\nabla})\vec{u}_c = \vec{J}[\vec{E} + \vec{u}_c \times \vec{B}] + \vec{u}_c\vec{R}_{ie}$$

Transport theory in partially ionized plasmas

KAKAN NIKAN KAWAN NAKAN KO KAMBAN KABAN/ KABAN/ KABA

How can we compute

Collisional frequencies;

Elements of the pressure tensor;

Heat flux vector;

Ionization-recombination terms;

Radiative transfer terms ?

Numerical solution

How can we solve the 2-fluid equations numerically?

Special treatment for collisional terms?

$$\vec{R_{ie}} = -lpha_n(ec{u_c} - ec{u_n}) - rac{
ho_n}{
ho_c}rac{ec{J}}{e}(m_e
u_{ni} - m_i
u_{ne})$$

How much new physics do we gain in 2-fluid compared to quasi-MHD?

Where can it be important?

Wave propagation

Force balance

Magnetic reconnection

Flux emergence

Chromospheric heating

Interstellar medium

Shock fronts

Turbulence...etc.

