Downflowing dynamics of vertical prominence threads

R. Oliver, R. Soler, T. Zaqarashvili, J. Terradas

Physics Department, University of the Balearic Islands, Spain

Introduction	
• 0 00000	

Model

Conclusions 000

Solar prominences

Filaments and prominences

- Quiescent prominences are long, thin and tall.
- Cool and dense objects $(T \simeq 10^4 \text{ K}, n \simeq 10^{10} \text{ cm}^{-3})$ embedded in the hotter and rarer solar corona $(T \simeq 10^6 \text{ K}, n \simeq 10^8 \text{ cm}^{-3}).$

http://www.avertedimagination.com (Hlpha)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Model	Results	Conclusions
000000	00000	00000000000000000	000
Horizontal threa	ids		

Dutch Open Telescope (H α)

- Seen from above, prominences display many thin threads aligned close to the direction of the filament axis.
- These threads are presumably cool condensations at the central part of large magnetic tubes anchored in the photosphere.
- The threads probably sit in a magnetic field dip.

Introduction

Model

Conclusions 000

Vertical threads

BUT...

Large quiescent prominences observed on the limb often display vertical fine structures.

http://www.avertedimagination.com (H α)

Introduction

Model

Conclusions 000

Vertical threads

BUT...

Large quiescent prominences observed on the limb often display vertical fine structures.

How can one reconcile horizontal and vertical threads?

http://www.avertedimagination.com (H α)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Vertical threads: Liu et al. (2012)

- Prominence formation observed with AIA on SDO.
- Composite 171 Å & 304 Å images (\simeq 800,000 K & \simeq 80,000 K).
- FOV size: \simeq 400 Mm \times \simeq 200 Mm. Duration: \simeq 10 hours.
- Prominence forms by condensation of hotter material.
- Vertical threads and downflows.

Liu et al. (2012) (304 Å & 171 Å)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Introduction	Model	Results	Conclusions
0000000	00000	000000000000000000	000
Liu et al.	(2012)		

• Prominence mass is not static, but maintained by balance of condensation (at a rate of $1.2 \times 10^{10} \text{ g s}^{-1}$) and drainage (at a rate of $1.1 \times 10^{10} \text{ g s}^{-1}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Drainage rate enough to dissolve the prominence in \simeq 2.5 hours.

Introduction Model Results Conclusio

 Space-time diagram along a vertical thread.

• Mass drains down along vertical threads in the form of bright blobs.

- Liu et al. (2012) studied 874 downflowing trajectories:
 - Typical event lasts between a few min and 30 min.
 - The descending mass blob starts at a height between 25" and 60".
 - Blob accelerations between 10 and 200 m s $^{-2}$ (mean: 46 m s $^{-2}$).
 - ullet Blob speeds 25" above the surface: \simeq 30km s $^{-1}$

Aims of this	work		
000000	00000	000000000000000000000000000000000000000	000
Introduction	Model	Results	Conclusions

Aims

• To investigate the dynamics of gas condensing in the corona.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• To estimate the importance of partial ionisation effects.

Introduction	Model	Results	Conclusions
000000	00000	00000000000000000	000
Outline			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Assumptions and plasma equations
- One-dimensional equations
- Static coronal equilibrium
- Mass condensation

3 Results

Model: assumptions and equations

We concentrate in the dynamics of the falling material after it has condensed. The condensation process is not reproduced.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We concentrate in the dynamics of the falling material after it has condensed. The condensation process is not reproduced.

- Ionisation/recombination ignored.
- Conduction, cooling, Joule heating ignored.
- Collisions between electrons and neutrals discarded in momentum and energy equations.
- $\bullet\,$ Pure H gas: species are H^+, e^- and H.
- Magnetic field is horizontal: no magnetic tension, but magnetic pressure is included.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Mass motions in the vertical direction only.

We concentrate in the dynamics of the falling material after it has condensed. The condensation process is not reproduced.

- Ionisation/recombination ignored.
- Conduction, cooling, Joule heating ignored.
- Collisions between electrons and neutrals discarded in momentum and energy equations.
- $\bullet\,$ Pure H gas: species are H^+, e^- and H.
- Magnetic field is horizontal: no magnetic tension, but magnetic pressure is included.
- Mass motions in the vertical direction only.
- Two-fluid equations presented yesterday by T. Zaqarashvili.
- To emulate the mass condensation a source term is added to the mass continuity equations of charged particles and neutrals.

One-dimension	al equations		
000000	0000	000000000000000000000000000000000000000	000
Introduction	Model	Results	Conclusions

- z-axis is vertical, x-axis along magnetic field.
- Magnetic field: $\mathbf{B} = B \, \widehat{\mathbf{e}}_{x}$.
- Charged particles: density ρ_i , pressure $p_{ie} = p_i + p_e$, velocity $\mathbf{v}_i = v_i \widehat{\mathbf{e}}_z$.
- Neutral particles: density ρ_n , pressure p_n , velocity $\mathbf{v}_n = v_n \hat{\mathbf{e}}_z$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

One-dimension	al equations		
000000	0000	000000000000000000000000000000000000000	000
Introduction	Model	Results	Conclusions

- *z*-axis is vertical, *x*-axis along magnetic field.
- Magnetic field: $\mathbf{B} = B \, \widehat{\mathbf{e}}_{x}$.
- Charged particles: density ρ_i , pressure $p_{ie} = p_i + p_e$, velocity $\mathbf{v}_i = v_i \hat{\mathbf{e}}_z$.
- Neutral particles: density ρ_n , pressure p_n , velocity $\mathbf{v}_n = v_n \hat{\mathbf{e}}_z$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Seven unknowns ρ_i , p_{ie} , v_i , B, ρ_n , p_n , v_n .
- The unknowns only depend on z and t.

	Model	Results	Conc
000000	00000	0000000000000000	000

One-dimensional equations

$$\frac{\partial \rho_i}{\partial t} = -v_i \frac{\partial \rho_i}{\partial z} - \rho_i \frac{\partial v_i}{\partial z} + r_i(z, t)$$

$$\rho_{i}\frac{\partial v_{i}}{\partial t} = -\rho_{i}v_{i}\frac{\partial v_{i}}{\partial z} - \frac{\partial p_{ie}}{\partial z} - g\rho_{i}$$
$$-\frac{1}{\mu}B\frac{\partial B}{\partial z} - \alpha_{in}(v_{i} - v_{n})$$

$$\frac{\partial \rho_n}{\partial t} = -v_n \frac{\partial \rho_n}{\partial z} - \rho_n \frac{\partial v_n}{\partial z} + r_n(z, t)$$

$$\rho_n \frac{\partial \mathbf{v}_n}{\partial t} = -\rho_n \mathbf{v}_n \frac{\partial \mathbf{v}_n}{\partial z} - \frac{\partial p_n}{\partial z} - g\rho_n + \alpha_{in}(\mathbf{v}_i - \mathbf{v}_n)$$

$$\frac{\partial p_{ie}}{\partial t} = -v_i \frac{\partial p_{ie}}{\partial z} - \gamma p_{ie} \frac{\partial v_i}{\partial z} + (\gamma - 1) \alpha_{in} (v_i - v_n) v_i$$

$$\frac{\partial p_n}{\partial t} = -v_n \frac{\partial p_n}{\partial z} - \gamma p_n \frac{\partial v_n}{\partial z} - (\gamma - 1)\alpha_{in}(v_i - v_n)v_n$$

$$\frac{\partial B}{\partial t} = -\mathbf{v}_i \frac{\partial B}{\partial z} - B \frac{\partial \mathbf{v}_i}{\partial z} + \frac{\partial}{\partial z} \left(\eta \frac{\partial B}{\partial z} \right)$$

(ロ) (型) (E) (E) (E) (O)(C)

Introduction	Model	Results	Conclusions
000000	00000	0000000000000000	000

Static coronal equilibrium

- In the initial state (t = 0) the vertical speed of charges and neutrals is zero: v_i = v_n = 0.
- The initial temperature is assumed uniform and identical for all species: T_0 . Thus, $p_{ie} = 2\rho_i R T_0$, $p_n = \rho_n R T_0$.
- The following vertically stratified solution is adopted:

 $\begin{aligned} \rho_{l}(z,t=0) &= \rho_{l0}e^{-z/H_{l}} \\ \rho_{lc}(z,t=0) &= \rho_{lc0}e^{-z/H_{l}} \\ B(z,t=0) &= B_{0}e^{-z/2H_{l}} \end{aligned} \qquad \rho_{n}(z,t=0) &= \rho_{n0}e^{-z/H_{n}} \end{aligned}$

• ρ_{i0} , p_{ie0} , B_0 , ρ_{n0} and p_{n0} are the values of the variables at the coronal base.

• H_i and H_n are the ions and neutrals vertical scale heights.

Static coronal equilibrium

- In the initial state (t = 0) the vertical speed of charges and neutrals is zero: v_i = v_n = 0.
- The initial temperature is assumed uniform and identical for all species: T_0 . Thus, $p_{ie} = 2\rho_i R T_0$, $p_n = \rho_n R T_0$.
- The following vertically stratified solution is adopted:

$$\rho_i(z, t = 0) = \rho_{i0}e^{-z/H_i}$$

$$p_{ie}(z, t = 0) = p_{ie0}e^{-z/H_i}$$

$$P_n(z, t = 0) = \rho_{n0}e^{-z/H_n}$$

$$P_n(z, t = 0) = p_{n0}e^{-z/H_n}$$

- ρ_{i0} , p_{ie0} , B_0 , ρ_{n0} and p_{n0} are the values of the variables at the coronal base.
- H_i and H_n are the ions and neutrals vertical scale heights.

 Introduction
 Model
 Results
 Conclusions

 0000000
 0000
 0000
 000

Mass condensation

• Mass condensation modeled by the terms r_i and r_n in the mass continuity equations, taken as follows

$$r_i(z,t) = r_{i0} \exp\left[-\left(\frac{z-z_0}{\Delta}\right)^2\right] \left[1 - \exp\left(-\frac{t}{\tau_0}\right)\right]$$
$$r_n(z,t) = r_{n0} \exp\left[-\left(\frac{z-z_0}{\Delta}\right)^2\right] \left[1 - \exp\left(-\frac{t}{\tau_0}\right)\right]$$

- Condensation is localised in space about a height $z = z_0$, has a characteristic vertical size 2Δ and grows smoothly in time until it reaches its full amplitude after a time $t \simeq 6\tau_0$ has elapsed. We consider $\tau_0 = 10$ s.
- Parameter values adjusted from the observations of Liu et al. (2012): $z_0 = 35 \text{ Mm}, \Delta = 0.5 \text{ Mm}, r_{i0} + r_{n0} = 4 \times 10^{-13} \text{ kg m}^{-3} \text{ s}^{-1}.$

Introduction	Model	Results	Conclusions
000000	00000	•••••	000
Outline			

2 Model

3 Results

- Fully ionised plasma, no mass condensation
 - Fully ionised plasma, no mass condensation, no magnetic field
 Fully ionised plasma, no mass condensation, magnetic field

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Fully ionised plasma
- Neutral gas
- Partially ionised plasma

4 Conclusions

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000

Fully ionised plasma, B = 0, no mass condensation

- No neutrals, no magnetic field.
- Density enhancement added to the coronal equilibrium at t = 0.
- No mass condensation for t > 0.
- Only the evolution equations of charged particles need to be considered:

$$\frac{\partial \rho_i}{\partial t} = -\mathbf{v}_i \frac{\partial \rho_i}{\partial z} - \rho_i \frac{\partial \mathbf{v}_i}{\partial z} + \mathbf{I}_i(\mathbf{z}, \mathbf{t})$$

$$\rho_i \frac{\partial \mathbf{v}_i}{\partial t} = -\rho_i \mathbf{v}_i \frac{\partial \mathbf{v}_i}{\partial z} - \frac{\partial p_{ie}}{\partial z} - \mathbf{g} \rho_i - \frac{1}{\mu} \mathbf{B} \frac{\partial \mathbf{B}}{\partial z} - \alpha_{in}(\mathbf{v}_i - \mathbf{v}_n)$$

$$\frac{\partial p_{ie}}{\partial t} = -\mathbf{v}_i \frac{\partial p_{ie}}{\partial z} - \gamma \rho_{ie} \frac{\partial \mathbf{v}_i}{\partial z} + (\gamma - \mathbf{I}) \alpha_{in}(\mathbf{v}_i - \mathbf{v}_n) \mathbf{v}_i$$

 Introduction
 Model
 Results
 Conclusion

 0000000
 00000
 000
 000
 000

Fully ionised plasma, B = 0, no mass condensation: density

Equilibrium:
$$\rho_{i0} = 5 \times 10^{-12} \text{ kg m}^{-3}$$
, $T_0 = 2 \times 10^6 \text{ K}$.

- Density enhancement of 5×10^{-11} kg m⁻³.
- The blob falls and spreads, so its density decreases.
- If the blob were to fall with the acceleration of gravity, it would reach z = 0 at $t \simeq 500$ s.

The blob has almost no acceleration! $v \simeq 5 \text{ km s}^{-1}$.

Fully ionised plasma, B = 0, no mass cond.: pressure

Temporal evolution of plasma pressure in the first 200 s.

- The initial perturbation generates a sound wave that moves at a speed of $\simeq 235 \text{ km s}^{-1}$ and perturbs the coronal medium.
- This causes a rearrangement of the pressure such that its gradient opposes the pull of gravity.

(日) (四) (日) (日) (日)

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000
A 11			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

2 Model

3 Results

• Fully ionised plasma, no mass condensation

• Fully ionised plasma

- Fully ionised plasma, no magnetic field
- Fully ionised plasma, magnetic field
- Neutral gas
- Partially ionised plasma

4 Conclusions

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000

Fully ionised plasma, B = 0

- No neutrals, no magnetic field.
- Coronal equilibrium at t = 0 (no density enhancement added).
- Mass condensation for $t \ge 0$.
- Only the evolution equations of charged particles need to be considered:

$$\frac{\partial \rho_i}{\partial t} = -\mathbf{v}_i \frac{\partial \rho_i}{\partial z} - \rho_i \frac{\partial \mathbf{v}_i}{\partial z} + \mathbf{r}_i(z, t)$$

$$\rho_i \frac{\partial \mathbf{v}_i}{\partial t} = -\rho_i \mathbf{v}_i \frac{\partial \mathbf{v}_i}{\partial z} - \frac{\partial p_{ie}}{\partial z} - g\rho_i - \frac{1}{\mu} \frac{\partial \mathcal{B}}{\partial z} - \alpha_{in}(\mathbf{v}_i - \mathbf{v}_n)$$

$$\frac{\partial p_{ie}}{\partial t} = -\mathbf{v}_i \frac{\partial p_{ie}}{\partial z} - \gamma \rho_{ie} \frac{\partial \mathbf{v}_i}{\partial z} + (\gamma - 1)\alpha_{in}(\mathbf{v}_i - \mathbf{v}_n)\mathbf{v}_i$$

Fully ionised plasma, B = 0: density

- Blob forms at the mass condensation position in less than 200 s.
- Blob moves downwards faster than in the previous case (without mass condensation).
- Blob leaves a trail of material behind.
- This trail is formed by the continuous mass injection.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Fully ionised plasma, B = 0: acceleration

- Blob formation and acceleration. Trailing material.
- A second-order polynomial fit to the maximum density positions yields a = -40 m s $^{-2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fully ionised plasma, B = 0: acceleration

- Blob formation and acceleration. Trailing material.
- A second-order polynomial fit to the maximum density positions yields a = -40 m s $^{-2}$.

- Accelerations: the inertial term is irrelevant.
- The mass condensation grows smoothly and so a strong pressure gradient can develop from t = 0.
- The blob acceleration is not constant: it decreases in time from roughly 50 m s ⁻² to 40 m s ⁻².

Fully ionised plasma, B = 0: dynamics

- lons velocity distribution as a function of time.
- The condensing mass pulls down material from above and pushes down material below.
- The whole corona falls at a speed that grows in time.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Fully ionised plasma, B = 0: dynamics

- lons velocity distribution as a function of time.
- The condensing mass pulls down material from above and pushes down material below.
- The whole corona falls at a speed that grows in time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Fully ionised plasma, $B \neq 0$

Same parameters as before, but now $B \neq 0$. $\beta_0 = 0.1 \rightarrow \text{initial magnetic field at } z = 0 \text{ is } B_0 = 20.4 \text{ G}.$

- Blob formation and dynamics are completely analogous to those of the case $B \neq 0$.
- Total pressure at the mass condensation position is much larger than in the case $B \neq 0$.
- A strong magnetic pressure gradient develops that slows down the blob fall.

(日) (四) (日) (日) (日)

- The blob acceleration is a = -12 m s $^{-2}$.
- Magnetic diffusion is irrelevant.

Fully ionised plasma, $B \neq 0$

Same parameters as before, but now $B \neq 0$. $\beta_0 = 0.1 \rightarrow \text{initial magnetic field at } z = 0 \text{ is } B_0 = 20.4 \text{ G}.$

- Blob formation and dynamics are completely analogous to those of the case $B \neq 0$.
- Total pressure at the mass condensation position is much larger than in the case $B \neq 0$.

- A strong magnetic pressure gradient develops that slows down the blob fall.
- The blob acceleration is a = -12 m s $^{-2}$.
- Magnetic diffusion is irrelevant.

Fully ionised plasma, $B \neq 0$

Same parameters as before, but now $B \neq 0$. $\beta_0 = 0.1 \rightarrow \text{initial magnetic field at } z = 0 \text{ is } B_0 = 20.4 \text{ G}.$

- Blob formation and dynamics are completely analogous to those of the case $B \neq 0$.
- Total pressure at the mass condensation position is much larger than in the case $B \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A strong magnetic pressure gradient develops that slows down the blob fall.
- The blob acceleration is a = -12 m s $^{-2}$.
- Magnetic diffusion is irrelevant.

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000
Outline			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2 Model

3 Results

- Fully ionised plasma, no mass condensation
- Fully ionised plasma
- Neutral gas
- Partially ionised plasma

4 Conclusions

Neutral gas			
000000	00000	000000000000000000000000000000000000000	000
Introduction	Model	Results	Conclusions

- The time dependent equations for ρ_n, p_n and v_n are identical to those of ρ_i, p_{ie} and v_i.
- But the initial configuration is slightly different...

 $\rho_{i}(z, t = 0) = \rho_{i0}e^{-z/H_{i}} \qquad \rho_{n}(z, t = 0) = \rho_{n0}e^{-z/H_{n}} \\
\rho_{ie}(z, t = 0) = \rho_{ie0}e^{-z/H_{i}} \qquad \rho_{n}(z, t = 0) = \rho_{n0}e^{-z/H_{n}}$

• ... because p_{ie} includes p_i and p_e :

$$p_{ie0} = 2\rho_{i0}RT_0 \qquad p_{n0} = \rho_{n0}RT_0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• The scale heights are also different: $H_i = 2\frac{RT_0}{g}$, $H_n = \frac{RT_0}{g}$.

Neutral gas			
Introduction	Model	Results	Conclusions

- The time dependent equations for ρ_n, p_n and v_n are identical to those of ρ_i, p_{ie} and v_i.
- But the initial configuration is slightly different...

$$\begin{aligned} \rho_i(z,t=0) &= \rho_{i0} e^{-z/H_i} \\ \rho_{ie}(z,t=0) &= p_{ie0} e^{-z/H_i} \end{aligned} \qquad \rho_n(z,t=0) &= \rho_{n0} e^{-z/H_n} \\ p_n(z,t=0) &= p_{n0} e^{-z/H_n} \end{aligned}$$

• ... because p_{ie} includes p_i and p_e :

$$p_{ie0} = 2\rho_{i0}RT_0 \qquad p_{n0} = \rho_{n0}RT_0$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• The scale heights are also different: $H_i = 2\frac{RT_0}{g}$, $H_n = \frac{RT_0}{g}$.

	Model	Results	Conclusions
0000000	00000	000000000000000000000000000000000000000	000
Neutral gas			

- The time dependent equations for ρ_n, p_n and v_n are identical to those of ρ_i, p_{ie} and v_i.
- But the initial configuration is slightly different...

$$\begin{aligned} \rho_i(z,t=0) &= \rho_{i0} e^{-z/H_i} \\ \rho_{ie}(z,t=0) &= p_{ie0} e^{-z/H_i} \end{aligned} \qquad \rho_n(z,t=0) &= \rho_{n0} e^{-z/H_n} \\ p_n(z,t=0) &= p_{n0} e^{-z/H_n} \end{aligned}$$

• ... because p_{ie} includes p_i and p_e :

$$p_{ie0} = 2\rho_{i0}RT_0$$
 $p_{n0} = \rho_{n0}RT_0$

- The scale heights are also different: $H_i = 2\frac{RT_0}{g}$, $H_n = \frac{RT_0}{g}$.
- The blob moves in an environment with smaller pressure and thus a smaller pressure gradient arises.
- Using the same values as in the fully ionised case (i.e. $\rho_{n0} = 5 \times 10^{-12} \text{ kg m}^{-3}$, $T_0 = 2 \times 10^6 \text{ K}$): $a = -56 \text{ m s}^{-2}$.

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000
Outline			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2 Model

3 Results

- Fully ionised plasma, no mass condensation
- Fully ionised plasma
- Neutral gas
- Partially ionised plasma
 - Partially ionised plasma, no magnetic field
 - Partially ionised plasma, magnetic field

4 Conclusions

	Model	Results	Conclusion
000000	00000	000000000000000000000000000000000000000	000

Partially ionised plasma, B = 0

Equilibrium density

- To reproduce the observations of Liu et al. (2012) we should consider a fully ionised coronal environment at t = 0, that corresponds to $\rho_{n0} = 0$.
- This leads to numerical problems, so a small amount of neutrals is included in the equilibrium.
- We choose the same mass density at the base of the corona as before: $5\times 10^{-12}~kg~m^{-3}.$
- 90% of the mass at z = 0 is in the form of charged particles.
- The temperature is also unchanged: $T_0 = 2 \times 10^6$ K.

Mass condensation

- The total mass condensation rate is the same as before.
- 90% of the mass condenses as neutrals.
- 10% of the mass condenses as ions.

	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000

Partially ionised plasma, B = 0

Equilibrium density

- To reproduce the observations of Liu et al. (2012) we should consider a fully ionised coronal environment at t = 0, that corresponds to $\rho_{n0} = 0$.
- This leads to numerical problems, so a small amount of neutrals is included in the equilibrium.
- We choose the same mass density at the base of the corona as before: $5\times 10^{-12}~kg~m^{-3}.$
- 90% of the mass at z = 0 is in the form of charged particles.
- The temperature is also unchanged: $T_0 = 2 \times 10^6$ K.

Mass condensation

- The total mass condensation rate is the same as before.
- 90% of the mass condenses as neutrals.
- 10% of the mass condenses as ions.

Partially ionised plasma, B = 0, $\alpha_{in} = 0$: density

We start by setting $\alpha_{in} = 0$: charges and neutrals evolve independently from each other, as in a fully ionised and in a fully neutral medium.

- lons fall very slowly, while neutrals have a strong acceleration.
- Reason: small mass condensation of ions, large mass condensation of neutrals in a rare environment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Partially ionised plasma, B = 0, $\alpha_{in} = 0$: blob position

• This figure is similar to the density space-time diagram, but only the positions of both blobs are displayed.

• lons: a = -5 m s⁻², neutrals: a = -175 m s⁻².

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Partially ionised plasma, B = 0: density

Temporal evolution of density.

- Two blobs form and trail of material above them.
- Friction couples very quickly the dynamics of charges and neutrals and causes the charged and neutral blobs to fall together.

Partially ionised plasma, B = 0: blob position

• $\alpha_{in} = 0$. lons: a = -5 m s $^{-2}$, neutrals: a = -175 m s $^{-2}$.

• $\alpha_{in} \neq 0$. lons and neutrals: a = -41 m s $^{-2}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Partially ionised plasma, B = 0: blob position

- $\alpha_{in} = 0$. lons: a = -5 m s $^{-2}$, neutrals: a = -175 m s $^{-2}$.
- $\alpha_{in} \neq 0$. lons and neutrals: a = -41 m s $^{-2}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Partially ionised plasma, B = 0: blob acceleration

- Friction force drags ions downwards. Pressure gradient points upwards.
- The neutrals pressure gradient and friction force are upwards.
- The friction and pressure gradient accelerations of ions are much larger than those of neutrals, but when combined together with gravity they yield the same total acceleration.

A D > A P > A B > A B >

э

Introduction	Model	Results	Conclusions
0000000	00000	000000000000000000000000000000000000	•00
Conclusions			

- In the absence of a mass source, the blob falls at a constant speed.
- A mass condensation gives rise to the formation and subsequent acceleration of the blob.
 - \bullet Values of acceleration range from 10 to 175 m s $^{-2}.$
- Environment with high pressure makes easier to create a large pressure gradient, which results in smaller acceleration.
 - Higher pressure can be caused by: higher temperature, higher base density, magnetic field.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Smaller mass condensation rate and large pressure lead to same results.
- The dynamical coupling between charged particles and neutrals is extremely fast.

Introduction	Model	Results	Conclusions
000000	00000	000000000000000000000000000000000000000	000
Conclusions			

- Gilbert et al. (2002) studied the vertical motions in a steady-state, uniform prominence model with horizontal and uniform magnetic field.
- \bullet Besides H⁺, e⁻ and H, these authors also included He⁺ and He.
- Pressure gradient is neglected.
- They computed the velocity of the 5 species. No acceleration: the speeds are uniform over the whole prominence height.

- Conclusion #1: charges and neutrals drain at different speeds.
- Conclusion #2: neutrals drain across the magnetic field.

Model	Results	Conclusions
		000

Conclusions

It is hard to see the distinctive trail of plasma in Liu et al.'s figure.

