Single-Fluid Approximatio

Two-Fluid Theory 00000

Resonant Damping of Prominence Thread Oscillations: Effect of Partial Ionization

Roberto Soler¹

in collaboration with J. Andries¹, J. L. Ballester², M. Goossens¹, R. Oliver²

¹Centre for Plasma Astrophysics Katholieke Universiteit Leuven (Belgium)

²Solar Physics Group Universitat de les Illes Balears (Spain)

Workshop on Partially Ionized Plasmas in Astrophysics Tenerife, 19 – 22 June 2012

	Single-Fluid Approximation	Two-Fluid Theory	Conclusions
00000000	000	00000	
Outline			

- 1 Introduction: Damped kink waves in prominence threads
- **2** Single-Fluid Approximation
- 3 Two-Fluid Theory
- 4 Conclusions

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Solar Prominences

Image credit: Okamoto et al. (2007) / Ca II-H, SOT Hinode

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Thin Threads of Solar Prominences

Image credit: Yong Lin / H α , SST

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Thin Threads of Solar Prominences

- Threads are the building blocks of prominences (Lin 2004)
- Widths: 100 500 km, Lengths: 3,500 15,000 km
- Threads are orientated along magnetic field lines
- Observed threads are only a part of larger magnetic flux tubes
- The prominence body is formed by many piled threads

Sketch adapted from Joarder et al. (1997)

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Thin Threads of Solar Prominences

- Threads are the building blocks of prominences (Lin 2004)
- Widths: 100 500 km, Lengths: 3,500 15,000 km
- Threads are orientated along magnetic field lines
- Observed threads are only a part of larger magnetic flux tubes
- The prominence body is formed by many piled threads

Sketch adapted from Joarder et al. (1997)

- High-resolution $H\alpha$ observations of a quiescent prominence (SST)
- Running waves along different threads were observed:
 - $v_{\rm ph} \sim 30 \ {\rm km/s}$
 - *P* ~ 4 min

Theoretical interpretation: Alfvénic kink waves

Introduction Single-Fluid Approximation Two-Fluid Theory Conclusions

- High-resolution $H\alpha$ observations of a quiescent prominence (SST)
- Running waves along different threads were observed:
 - $v_{\rm ph} \sim 30 \ {\rm km/s}$
 - *P* ~ 4 min

Theoretical interpretation: Alfvénic kink waves

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Transverse Waves in Prominence Threads Example: Lin et al. (2009)

- High-resolution $H\alpha$ observations of a quiescent prominence (SST)
- Running waves along different threads were observed:
 - $v_{\rm ph} \sim 30 \ {\rm km/s}$
 - *P* ~ 4 min
- Theoretical interpretation: Alfvénic kink waves

Animation credit: Jaume Terradas

Dominant restoring force is magnetic tension

Introduction Single-Fluid Approximation Two-Fluid Theory Conclusions

- Example: Ning et al. (2009)
 - High-resolution Hα images of a quiescent prominence (HINODE/SOT)
 - Strongly damped transverse oscillations (kink waves)

	Number of	Period	Oscillation	Phase	Drifting
	observed		amplitude	velocity	velocity
	periods	(s)	(km)	(km s ⁻¹)	(km s ⁻¹)
G1	3	255	1080	8.5	-
G2	5	292	960	6.6	1.0
G3	3	210	720	6.9	-
G4	6	210	960	9.1	4.0
G5	3	315	840	5.3	-
G6	2	240	1080	9.0	-
G7	3	525	1320	5.0	3.6
G8	8	278	860	6.9	-
G9	-	-	-	-	9.2
G10	-	-	-	-	7.5
G11	-	-	-	-	3.2
G12	5	278	1080	7.8	8.1
G13	6	276	840	6.1	4.8
G14	3	360	1320	7.3	2.7
G15	4	240	1080	9.0	1.9
G16	2	390	1440	7.4	-

Mean number of periods ≈ 4

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Resonant Absorption as Damping Mechanism

Energy transfer from transverse to small-scale torsional motions

Animation credit: Jaume Terradas

Damping length: $L_{\rm D} \sim \omega^{-1}$ (Terradas, Goossens, & Verth 2010)

Introduction	Single-Fluid Approximation	Two-Fluid Theory	Conclusions
000000000	000	00000	
Aims			
AIIIIS			

Motivation

- Resonant absorption can explain the damping of kink waves in fully ionized coronal flux tubes, but...
- ... prominence plasmas are partially ionized!
- Partial ionization may affect the resonant absorption process
- Small length scales are generated at the resonance position

Purpose

To investigate the resonant damping of kink modes in partially ionized threads

Presentation based on results from Soler, Oliver, & Ballester 2011, ApJ, 726, 102 Soler, Andries, & Goossens 2012, A&A, 537, A84

- Inhomogeneity length scale: $0 \le I/R \le 2$
- \blacksquare Arbitrary ionization degree: $0 \leq \alpha = \rho_{\rm n}/\rho_{\rm i} < \infty$
- \blacksquare Density contrast: $\zeta = \rho_{\rm p}/\rho_{\rm c} = 200$

	Single-Fluid Approximation	Two-Fluid Theory	Conclusions
	•00		
Soler, Oliver, & I	d Approximation		

- We use the single-fluid approximation (e.g., Braginskii 1965)
- Hydrogen plasma

 Ideal MHD equations + generalized induction equation with Cowling's (Pedersen's) term

Momentum equation + Generalized induction equation

$$\begin{split} \rho \frac{\mathbf{D}\mathbf{v}}{\mathbf{D}t} &= \frac{1}{\mu} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B}, \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times \left(\mathbf{v} \times \mathbf{B} \right) \\ &+ \nabla \times \left\{ \begin{bmatrix} \eta_{\mathrm{C}} \\ \mathbf{B}^{2} \end{array} (\nabla \times \mathbf{B}) \times \mathbf{B} \end{bmatrix} \times \mathbf{B} \right\} \end{split}$$

Cowling's Diffusion \rightarrow ion-neutral collisions

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Approximate Analytic Theory

- Fourier analysis of linear perturbations, $\exp(i\frac{2\pi}{\lambda}z + i\varphi i\omega t)$
- \blacksquare Thin Tube Approximation, $\lambda/R\gg 1$
- Thin Boundary Approximation, $I/R \ll 1$
- Exponential damping length: $A(z) \sim A_0 \exp(-z/L_D)$

 $L_{\rm D,RA} \ll L_{\rm D,C}$ for observed frequencies!

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Checking the Analytic Results

- $L_{\rm D}$ obtained by numerically solving the full eigenvalue problem
- The two different behaviors of *L*_D depending on the frequency range are consistent with the analytic theory
- For observed frequencies resonant absorption dominates: result independent of ionization degree

Single-Fluid Approximation

Two-Fluid Theory

Conclusions

Checking the Analytic Results

- $L_{\rm D}$ obtained by numerically solving the full eigenvalue problem
- The two different behaviors of *L*_D depending on the frequency range are consistent with the analytic theory
- For observed frequencies resonant absorption dominates: result independent of ionization degree

	Single-Fluid Approximation	Two-Fluid Theory	Conclusions
		00000	
Two-fluid Soler, Andries, &	Theory _{Goossens} (2012)		

- \blacksquare The single-fluid approximation is valid only when $\nu_{\rm in}/\omega\gg 1$
- This is OK for realistic frequencies, but...
- \blacksquare . . . we look for a general result valid for arbitrary $\nu_{\rm in}/\omega$
- We use the two-fluid theory

$$\begin{split} \rho_{i} \frac{\mathrm{D} \mathbf{v}_{i}}{\mathrm{D} t} &= \frac{1}{\mu} \left(\nabla \times \mathbf{B} \right) \times \mathbf{B} - \rho_{n} \nu_{in} \left(\mathbf{v}_{i} - \mathbf{v}_{n} \right) \\ \rho_{n} \frac{\mathrm{D} \mathbf{v}_{n}}{\mathrm{D} t} &= -\rho_{n} \nu_{in} \left(\mathbf{v}_{n} - \mathbf{v}_{i} \right) \\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times \left(\mathbf{v}_{i} \times \mathbf{B} \right) \end{split}$$

Introduction Single-Fluid Approximation Conclusions

- Fourier analysis of linear perturbations, $\exp(i\frac{2\pi}{\lambda}z + i\varphi i\omega t)$
- Thin Tube Approximation, $\lambda/R \gg 1$
- Thin Boundary Approximation, $I/R \ll 1$
- Exponential damping length: $A(z) \sim A_0 \exp(-z/L_D)$

$$\frac{1}{L_{\rm D}} \approx \frac{1}{L_{\rm D,RA}} + \frac{1}{L_{\rm D,IN}}$$
Resonant Absorption
Ion-neutral Collisions
$$L_{\rm D,RA} = 2\pi \mathcal{F} \frac{R}{l} \frac{\zeta + 1}{\zeta - 1} \frac{v_{\rm ph}}{\omega} \left(\frac{\omega^2 + v_{\rm in}^2}{\omega^2 + (1 + \alpha)v_{\rm in}^2} \right)^{1/2}$$

$$L_{\rm D,IN} = 2v_{\rm ph} \frac{\omega^2 + v_{\rm in}^2}{\alpha \omega^2 v_{\rm in}} \left(\frac{\omega^2 + (1 + \alpha)v_{\rm in}^2}{\omega^2 + v_{\rm in}^2} \right)^{1/2}$$

Introduction Single-Fluid Approximation OC + Diversion OC + Divers

 \blacksquare We perform the limit $\nu_{\rm in}/\omega\gg 1$

$$\begin{split} \mathcal{L}_{\mathrm{D,RA}} &= 2\pi \mathcal{F} \frac{R}{l} \frac{\zeta + 1}{\zeta - 1} \frac{v_{\mathrm{ph}}}{\omega} \left(\frac{\omega^2 + v_{\mathrm{in}}^2}{\omega^2 + (1 + \alpha) v_{\mathrm{in}}^2} \right)^{1/2} \\ &\approx 2\pi \mathcal{F} \frac{R}{l} \frac{\zeta + 1}{\zeta - 1} \frac{v_{\mathrm{ph}}}{\sqrt{1 + \alpha}} \frac{1}{\omega} \longrightarrow \mathrm{OK!} \end{split}$$

$$\begin{split} \mathcal{L}_{\mathrm{D,IN}} &= 2 v_{\mathrm{ph}} \frac{\omega^2 + v_{\mathrm{in}}^2}{\alpha \omega^2 v_{\mathrm{in}}} \left(\frac{\omega^2 + (1+\alpha) v_{\mathrm{in}}^2}{\omega^2 + v_{\mathrm{in}}^2} \right)^{1/2} \\ &\approx 2 v_{\mathrm{ph}} \frac{(1+\alpha)^{1/2} v_{\mathrm{in}}}{\alpha} \frac{1}{\omega^2} = \mathcal{L}_{\mathrm{D,C}} \longrightarrow \mathrm{OK!} \end{split}$$

Single-fluid results are consistently recovered!

Single-Fluid Approximation

Two-Fluid Theory 000●0 Conclusions

Dependence on $\nu_{\rm in}/\omega$

- Full result (analytic)
- \diamond Full result (numeric)
- – Resonant damping
- \cdots Ion-neutral collisions

Introduction 000000000	Single-Fluid Approximation	Two-Fluid Theory 0000●	Conclusions
Dependence on	ω		

 \blacksquare We fix $\nu_{\rm in}=100$

- Full result (analytic)
- \diamond Full result (numeric)
- – Resonant damping
- \cdots Ion-neutral collisions

	Single-Fluid Approximation	Two-Fluid Theory	Conclusions
00000000	000	00000	
Conclusions			

- Partial ionization does not affect the resonant damping of kink modes
- Single-fluid results are recovered from the two-fluid case in the limit of high collision frequencies (as expected!)
- Ion-neutral collisions are less efficient than resonant damping unless the wave frequency and the collision frequency are of the same order
- When $\nu_{\rm in} \gg \omega \to L_{\rm D,RA} \sim rac{1}{\omega}$, $L_{\rm D,IN} \sim rac{1}{\omega^2}$
- For realistic wave frequencies the effect of resonant absorption dominates and provides efficient damping

References:

Soler, Oliver, & Ballester 2011, ApJ, 726, 102 Soler, Andries, & Goossens 2012, A&A, 537, A84