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Solar Prominences

Image credit: Okamoto et al. (2007) / Ca II-H, SOT Hlnode
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Thin Threads of Solar Prominences
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Image credit: Yong Lin / Hx, SST



Introduction
(o] J

Thin Threads of Solar Prominences

m Threads are the building blocks of prominences (Lin 2004)
m Widths: 100 — 500 km, Lengths: 3,500 — 15,000 km
m Threads are orientated along magnetic field lines

m Observed threads are only a part of larger magnetic flux tubes
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Sketch adapted from Joarder et al. (1997)
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Thin Threads of Solar Prominences

Threads are the building blocks of prominences (Lin 2004)
Widths: 100 — 500 km, Lengths: 3,500 — 15,000 km

Threads are orientated along magnetic field lines

Observed threads are only a part of larger magnetic flux tubes

The prominence body is formed by many piled threads
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Sketch adapted from Joarder et al. (1997)
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Transverse Waves in Prominence Threads

Example: Lin et al. (2009)
m High-resolution Ho observations of a quiescent prominence (SST)

m Running waves along different threads were observed:

® vpn ~ 30 km/s
m P~ 4 min
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Transverse Waves in Prominence Threads
Example: Lin et al. (2009)

m High-resolution Ho observations of a quiescent prominence (SST)
m Running waves along different threads were observed:

® vy, ~ 30 km/s

® P~4 min
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Transverse Waves in Prominence Threads
Example: Lin et al. (2009)

m High-resolution Ho observations of a quiescent prominence (SST)
m Running waves along different threads were observed:

® vy, ~ 30 km/s

® P~4 min
m Theoretical interpretation: Alfvénic kink waves

Animation credit: Jaume Terradas

m Dominant restoring force is magnetic tension
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Evidences of Wave Damping
Example: Ning et al. (2009)

m High-resolution Hx images of a quiescent prominence
(HINODE/SOT)
m Strongly damped transverse oscillations (kink waves)

HINODE /SOT Ha+0.076 12:13:47 UT

Number of  Period ~ Oscillation ~ Phase Drifting
observed amplitude  velocity  velocity
periods (s) (km) (kms™)  (kms™)
B Gl 3 255 1080 83 -
B G2 5 292 960 0.6 1.0
] 333 210 720 6.9 -
2 G4 6 200 960 9.1 40
G5 3 315 840 53 -
Go 2 240 1080 9.0 -
G7 3 525 1320 50 3.0
G8 8 278 860 6.9 -
G9 - - - - 9.2
GI0 - - - - 15
GIl - - - - 32
GI2 5 278 1080 78 8.1
GI3 6 276 840 6.1 48
Gl4 3 360 1320 13 27
GI5S 4 240 1080 9.0 19
Gl6 2 390 1440 74 -

Mean number of periods ~ 4
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Resonant Absorption as Damping Mechanism

m Due to plasma inhomogeneity the kink mode is a resonant wave
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Resonant Absorption as Damping Mechanism

m Energy transfer from transverse to small-scale torsional motions
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Animation credit: Jaume Terradas

m Damping length: Lp ~ w ! (Terradas, Goossens, & Verth 2010)
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Aims

m Resonant absorption can explain the damping of kink waves in fully
ionized coronal flux tubes, but. ..

m ...prominence plasmas are partially ionized!

m Partial ionization may affect the resonant absorption process

m Small length scales are generated at the resonance position

Purpose

m To investigate the resonant damping of kink modes in partially
ionized threads

Presentation based on results from
Soler, Oliver, & Ballester 2011, ApJ, 726, 102
Soler, Andries, & Goossens 2012, A&A, 537, A84
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Model

m Inhomogeneity length scale: 0 < //R <2
m Arbitrary ionization degree: 0 < & = p,/p; < 00
m Density contrast: ¢ = p,/p. = 200
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Single-Fluid Approximation
Soler, Oliver, & Ballester (2011)

m We use the single-fluid approximation (e.g., Braginskii 1965)
m Hydrogen plasma

m Ideal MHD equations + generalized induction equation with
Cowling's (Pedersen's) term

Momentum equation + Generalized induction equation

Dv 1
pﬁ = *(VXB)XB,
%—]? = Vx(vxB)
TNc
+V><H§(V><B)><B}><B}

B Cowling's Diffusion — ion-neutral collisions
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Approximate Analytic Theory

Fourier analysis of linear perturbations, exp(i2 Lz+ip—iwt)
Thin Tube Approximation, A/R > 1

Thin Boundary Approximation, //R <« 1

Exponential damping length: A(z) ~ Agexp (—z/Lp)

1 1 1
LD Lpra Lp,c
B Resonant Absorption B Cowling's Diffusion
R C +1 Vbh 1
L =2nF— L
BHR = I{—1\itaw

lpo—2 G Y 11
PCT T 1+ 0320 w?

Lpra < Lp,c for observed frequencies! J
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Checking the Analytic Results
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m Lp obtained by numerically solving the full eigenvalue problem

m The two different behaviors of L depending on the frequency range
are consistent with the analytic theory

m For observed frequencies resonant absorption dominates: result
independent of ionization degree
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Checking the Analytic Results
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m Lp obtained by numerically solving the full eigenvalue problem

m The two different behaviors of L depending on the frequency range
are consistent with the analytic theory

m For observed frequencies resonant absorption dominates: result
independent of ionization degree
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Two-fluid Theory

Soler, Andries, & Goossens (2012)

m The single-fluid approximation is valid only when vi,/w > 1
m This is OK for realistic frequencies, but. ..
m ... we look for a general result valid for arbitrary vi,/w

m We use the two-fluid theory

Pi Dvi = 1 (v X B) x B — PnVin (Vi - Vn)
Dt v
Dv,
Pn Dt = —PnVin (Vn — Vi)
oB

E = VX(ViXB)
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Approximate Analytic Theory (again)

Fourier analysis of linear perturbations, exp( Lz + i@ —iwt)
Thin Tube Approximation, A/R > 1

Thin Boundary Approximation, //R < 1

Exponential damping length: A(z) ~ Agexp (—z/Lp)

1 1 n 1
LD [pra Lpax
B Resonant Absorption B lon-neutral Collisions
RC+1vpn w? +v2 e
LD RA = 2nfFf————| ———
B IC—1 w \w?+ (1+a)vi,

LpN = 2vph

w? 2, [ w?+ (14 a)v3 \ 2
xXW2Viy, w? 4+ V2
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Recovering the Single-fluid Results

m We perform the limit vi,/w > 1 J

L — nF-
DRA Ii—1w \ w2+ (1+a
o REHL o 1
/C—1\/1+ocw

RC+1vem w2++2 \7?
%

Q

— OK!

. ) W2 +v2 (w2 + (14 a)v2 \ "
= 2y
D,IN ph—— )

1 1/2 in 1
%E - LD7C — OK'
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=

Single-fluid results are consistently recovered! )




Two-Fluid Theory
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Dependence on v;,/w
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Two-Fluid Theory
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Dependence on w

m We fix v;, = 100
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—  Full result (analytic)
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Conclusions

Conclusions

m Partial ionization does not affect the resonant damping of kink
modes

m Single-fluid results are recovered from the two-fluid case in the limit
of high collision frequencies (as expected!)

m lon-neutral collisions are less efficient than resonant damping unless
the wave frequency and the collision frequency are of the same order

m When Vi, > w — Lpra ~ =, Lpax ~ ﬁ

m For realistic wave frequencies the effect of resonant absorption
dominates and provides efficient damping

References:
Soler, Oliver, & Ballester 2011, ApJ, 726, 102
Soler, Andries, & Goossens 2012, A&A, 537, A84
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