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Giant Molecular Clouds (GMC)

e.g. Rosette Molecular Cloud

Size ' 35 pc

Mass ' 105 M�

Mean Density ' 10−22 gm cm−3

Temperature ' 10 K⇒ sound speed ' 0.2 km s−1

Alfvén speed ' 2 km s−1 ⇒ magnetic pressure dominates

Velocity dispersion ' 10 km s−1



Translucent Clumps

Rosette GMC not Homogeneous: CO maps show that it consists of ' 70 clumps with

Sizes ' 3.5 – 8.0 pc

Masses ' 102 – 2 103 M�

Densities 10−21 gm cm−3

Temperature ' 10 K⇒ Sound speed ' 0.2 km s−1

Alfvén speed ' 2 km s−1 ⇒ magnetic pressure dominates (Crutcher 1999)

Velocity dispersion ' 1 km s−1

⇒ Jeans Mass 3 103 M� (based on velocity dispersion)



Dense Cores

These clumps also have substructure. Contain dense cores with

Sizes < 1 pc

Masses ' 10 – 100 M�

Densities ' 10−19 gm cm−3

Temperature ' 10 K⇒ Sound speed ' 0.2 km s−1

Alfvén speed ' 2 km s−1 ⇒ magnetic pressure dominates

Velocity dispersion ' 0.3 km s−1

⇒ Jeans Mass 10 M� (based on velocity dispersion)



Ambipolar Diffusion (Ion–Neutral Drift)

Low ionization fraction Xi (< 10−4)→ ambipolar diffusion.

Magnetic Reynolds No = 1 for
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⇒Magnetic Reynolds number < 100 in Translucent Clumps and Dense cores

⇒ Ambipolar Diffusion important on scales smaller than GMC.

Viscosity

In neutral gas, Reynolds No = 1 for

Length scale = 3.2 10−4
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)
pc (M is Mach No)



Multifluid Equations

N fluids with equations (i = 1 · · ·N )
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fij – force exerted on i by j, αi – charge to mass ratio
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Hi – energy loss rate for i, Gij – energy transfer rate from j to i
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Species 1 - neutral (α1 = 0), Species 2 · · ·N charged.



Force is of the form

fij = Kijρiρj(vj − vi)

Define Hall parameter

βi =
αiB

ρ1Ki1

βi � 1⇒ Species i tied to field lines

βi � 1⇒ Species i tied to neutrals

in ISM β � 1 for ions and electrons, but not for grains



Time Dependent Numerical Scheme

Two Fluid

βi � 1 for all i > 1⇒ single conducting fluid.

Upwind (Godunov Type) scheme for each fluid. Add source terms. Subshocks captured
in usual way.

But

Must have all Hall parameters βi � 1 – true for ions and electrons, but not for grains.

If density of conducting fluid� total density

⇒ conducting fluid wavespeeds� equilibrium wavespeeds

⇒ small timestep with explicit scheme

Can increase mass of ions to increase timestep (Li, McKee & Klein 2006).

But only works for single conducting fluid.



Multi-Fluid

Some species with βi ' 1

Total density of charged species� total density

⇒ neglect inertia of charged species (otherwise equations are stiff)
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Get single fluid with induction equation

∂B

∂t
= −∇ ∧ E = ∇∧ (v ∧B) hyperbolic

− ∇ ∧ [ν0
(J ·B)

B2
B] conduction parallel to field

− ∇ ∧ [ν1
(J ∧B)

B
] Hall effect

− ∇ ∧ [ν2
(J ∧B)

B2
∧B] ambipolar diffusion

Here v is neutral velocity.



Resistivities

Conductivities are

σ0 =
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∑
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Resistivities are

ν0 =
1

σ0
ν1 = − σ2

(σ21 + σ22)
ν2 = − σ1

(σ21 + σ22)

Note |ν1| � 1 if all βi � 1 i.e. no Hall effect

To compute these need charged species densities, ρi.



Momentum equations for charged species reduce to

βi
B

(E + vi ∧B) + (v1 − vi) = 0 i = 2 · · ·N

(Neglecting inertia and collisions between charged species)

Also have

J = ∇∧B =
∑
i

αiρivi

These N equations determine E and the vi for i = 2 · · ·N .

Given the vi, determine the ρi from the continuity equations



Subtleties

If not isothermal, must include Lorentz force, J ∧ B as source term in momentum and
energy equations to get correct relations across subshock.

Hall term dispersive with

ω2 = ν21 cos2 θk4 (θ is angle between field and x axis)

i.e. phase and group velocity→∞ as wavelength→ 0 (whistler waves).

Might suppose that group velocity, 2ν1 cos θk, is effective wavespeed and ∆x is smallest
wavelength

⇒ stable timestep for explicit scheme ∆t =
∆x2

4πν1 cos θ
.

But



Obvious explicit scheme unconditionally unstable for pure Hall effect⇒

either implicit scheme for resistive terms

or differencing in O’Sullivan & Downes 2006 and super-time-stepping

Algorithm

1) Calculate solution at half time using a first order scheme which is explicit for hyper-
bolic terms, implicit for resistive terms.

2) Use this to calculate explicit, second order accurate fluxes for both hyperbolic and
resistive terms.

3) Advance solution by complete timestep using these fluxes.

⇒

scheme is second order and stability limited by hyperbolic timestep, not resistive timestep,
even if Hall term is dominant.



Shock Structure with Large Hall Parameters

Two charged species:

β2 = −5.8 106 (electrons), β3 = 5.8 103 (ions)

Preshock state:

Bx = 1.0, By = 0.6, Fast shock with Fast Mach No = 1.5

ν0 = 1.7 10−12, ν1 = 10−5, ν2 = −0.058 (Hall effect negligible)

Isothermal – neutral pressure negligible.



High Resolution
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Line – Integration of steady equations, markers – Numerical scheme

No rotation – Z component of field ' 10−4



Low Resolution
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Shock Structure with Strong Hall Effect

Two charged species:

β2 = −5.8 106 (electrons), β3 = 0.233 (grains).

Preshock:

Bx = 1.0, By = 0.6, Fast shock with Fast Mach No = 1.5

Preshock ν0 = 1.7 10−9, ν1 = 0.01, ν2 = 0.0023 (Significant Hall effect)

Isothermal – neutral pressure negligible.
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Low Resolution
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Shock Structure with Neutral Subshock

Two charged species:

β2 = −5.8 106 (electrons), β3 = 5.8 103 (ions)

Preshock state:

Bx = 1.0, By = 0.6, Fast shock with Fast Mach No = 5

ν0 = 1.7 10−12, ν1 = 10−5, ν2 = −0.058 (Hall effect negligible)

Isothermal – neutral sound speed a = 1.



High Resolution
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Low Resolution
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Multidimensions

Resistive terms contain cross-derivatives

⇒

fully implicit scheme messy.

But

Can treat cross-derivatives explicitly and only use implicit approximation for diagonal
terms:

∂2By

∂x2
,
∂2Bx

∂y2
etc

Scheme then has same stability properties as in one dimension. Cheap because just have
tridiagonal matrices to invert.



Can use scheme for:

1. Stability of multifluid shocks (Wardle instability)

2. Ambipolar diffusion in star forming regions.

3. Ambipolar diffusion and Hall effect in accretion discs

4. etc


