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Radiation

Radiation:

� important source of heating and cooling,

� main source of information about astrophysical plasmas.

MHD and MF numerical simulations: omnipresent numerical
laboratories.

Radiative transfer is essential for MHD and MF simulations.

Realistic numerical simulations in 3D: standard tool, still challenging
for both physics, mathematics and programming.
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Energy conservation equation
MHD:
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where radiative energy exchange is:

Qrad = −
∫
ν
(∇ · ~Fν)dν

Qrad = 4πκρ
∫
ν
κν(Jν −Bν)dν
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Intensity, mean intensity, flux

Mean intensity:

Jν =
1

4π

∫
4π
Iν(µ)dω

Flux:
~Fν =

1
4π

∫
4π
Iν(~µ)~µdω

Specific intensity:

deν = I(~r, ~µ, t, ν)dA cos θ dωdνdt

I(~r, ~µ, t, ν): 3 spatial coordinates, 2 angles, frequency, time.
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Radiative transfer equation

RTE:
1
c

∂Iν
∂t

+ ~µ · ∇Iν = jtot
ν − κtot

ν Iν

∂Iν/∂t can be neglected for non-relativistic fluids:

~µ · ∇Iν = jtot
ν − κtot

ν Iν

In plan-parallel 1D case:

− dIν
κνρdz

=
dIν
dτν

= Sν − Iν

where Sν is source function:

Sν = (1− εν)Jν + ενBν

where εν is photon distraction probability.
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RT schemes and requirements

Requirements for RT scheme (e.g. see Davis et al, 2012):

� periodic boundaries,

� T and ρ discontinuities

� explicit form of Jν (for NLTE)

� efficient for simple problems where RT does not dominate

� suitable for domain decomposition

The most common RT schemes

� Flux limited diffusion

� Ray tracing: short and long characteristics

Key issue: discretization frequency, spatial, angular.
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Codes

code grid (N)LTE RT solver rays bins

MURaM* uniform LTE Short 12 4
STAGGER uniform LTE Long ch. 9 12
Co5Bold uniform LTE Long 17 12

BIFROST non-uni. NLTE Short

Athena uniform NLTE Short
Flash AMR FLD

STAGGER (Nordlund & Galsgaard 1995; Carlsson et al. 2004; Stein & Nordlund 2006), MURaM (Vögler, 2004; Rempel
et al, 2009), Co5Bold (Freytag et al, 2002; Wedemeyer et al, 2004), BIFROST (Gudiksen et al, 2011; Hayek et al,
2010), ATHENA (Stone et al, 2008; Davis et al, 2012); Flash (Linde, 2002)

* The MANCHA code (Felipe et al, 2011) ≈ MURaM.
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Ray tracing

� Long characteristics (see Feautrier, 1964; Heinemann et al, 2006): more
computationally expensive, more difficult to use with domain
decomposition

� Short characteristics (Mihalas et al, 1978; Olson and Kunasz, 1987):
more numerical diffusion

J =
Nang∑
k=1

wkIk Fi =
Nang∑
k=1

wkµikIk
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Short characteristics

Formal solution of dIν
dτν

= Sν − Iν :

Iν(τν) = Iν(τ0
ν )e−(τν−τ0

ν ) +
∫ τν

τ0
ν

Sνe−(τν−tν)dtν

� LTE: Sν := Bν(TMHD)
� Example: MURaM (Vögler, 2004)

� NLTE: iteration procedure for Sν and Jν
� Examples: van Noort et al (2002), Hayek et al (2010), Davis et al

(2012)
� Accelerated Lambda Iteration (e.g. Gauss-Seidel by Trujillo Bueno &

Fabiani Bendicho, 1995)
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MURaM

The MURaM code (Vögler, 2004)

� fully compressible MHD;

� time-dependent, uniform 3D Cartesian grid;

� non-local, LTE, non-gray radiative transfer solved by short
characteristics;

� realistic equation of state including partial ionization;

� MPI parallelized.

The code has been used to simulate quiet sun, plage, umbra, active
regions and sunspot (and to study phenomena as local dynamo, flux
emergence, dynamics of the solar photosphere).

N.Vitas RT in MF and MHD simulations



Short characteristics in MURaM

Formal solution for interval EF:

IF = IE e∆τEF +
∫ τE

τF

B(τ) eτF−τdt ∆τEF =
∫ E

F

κ(s)ρ(s)ds

� IE from bilinear interpolation

� IA,B,C,D a priori unknown, extrapolated from previous time steps

� ρ, κ,B linear at EF

� 3 rays per octant
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Short characteristics in MURaM, cont.

At global boundaries:

� Top: Itop
νµ = 0

� Top (opaque ν): Itop
νµ = Bν(Ttop)(1− eτtop/µ)

� Bottom: Ibottom
νµ = Bν
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Frequency discretization
� Frequency discretization: 106 − 107 points to cover the wavelength

range [50 nm, 10 m].(Carlsson, 2004)

� Methods to reduced number of ν points: grey approximation,
opacity binning, opacity distribution function, opacity sampling.

�

dIi
dz

=
∫

Ωi

κνρ(Bν − Iν)dν ≈ κiρ(Bi − Ii)

� How many bins is sufficient?
� Co5bold, Stagger, MANCHA

Vogler
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Flux limited diffusion

Goal: to compute Fν and Jν without solving RTE for Iν .
RTE (assuming isotropic scattering):

1
c

∂Iν
∂t

+∇ · (~µIν) = jν − κνIν

First moment:
∂Jν
∂t

+∇ · ~Fν = 4πjν − κνcJν

Second moment:
1
c

∂ ~Fν
∂t

+ c∇ · Pν = −κν ~Fν

Eddington’s approximation (κνL� 1):

Pν =
1
3
Jν I
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Flux limited diffusion, cont.

First moment:
∂Jν
∂t

+∇ · ~Fν = 4πjν − κνcJν

Second moment + Eddington’s approximation:

1
c

∂ ~Fν
∂t

+
c

3
∇Jν = −κν ~Fν

∂/∂t of the 1st moment + ∇ of the 2nd + EA (and omitting jν and
κν terms):

∂2Jν
∂t2

− c2

3
∇2Jν = 0

Wave speed c/
√

3 - wrong!
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Flux limited diffusion, cont.

Instead, we omit ∂ ~Fν/∂t:

c

3
∇Jν = −κν ~Fν

and substitute to the 1st moment eq.

∂Jν
∂t
−∇ ·

(
c

3κν
∇Jν

)
= 4πjν − κνcJν

To avoid propagation speeds greater than c (and to limit flux that
became arbitrarily large for large ∇Jν) a correction factor (flux limiter
D) is used:

~Fν = − cD

κνρ
∇Jν
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Flux limited diffusion, cont.

So defined flux limiter is arbitrary, ad hoc, function of

R =
|∇Jν |
κνρJν

.

Levermore & Pomraning (1981) added εν to denominator or R and
defined D as:

D =
1
R

(
cothR− 1

R

)
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Nordlund’s criticism of FLD

Nordlund (2011) tested the ray tracing with long characteristics (RTLC)
versus the flux limited diffusion (example: fragmented stellar disc at low T ):

� FLD is an approximation that does not converge to the exact solution,
while RTLC does it as the number of rays increases.

� FLD reduces number of variables from 6 to 4, but computational cost for
eliptic equation in J is significant.

� RTLC easier to implement with “near-perfect” parallelization properties.

� Result of the test: RMS error of FLD largest around τ = 1 (reaches 0.4).

How universal are these conclusions?
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Some conclusions and some (unanswered) questions
Ray tracing (short characteristics) appear as the optimal choice for a
MF/MHD code modellling solar photo/chromosphere as long as the grid is
regular.

Multi-fluid approach is likely to require multiresolution.

� Different grids for MHD/MF and RT?

� One AMR for many frequencies?

� Can FLD account for continuum scattering?

� How to adapt SC for adaptive mesh grid?

� Is SC still superior than FLD in that case?

� Would it be possible to combine best of both methods?

� What are the alternatives?

/normalsize
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Some “unconventional” aproaches

� Dedner and Vollmoeller (2002):
� introduced short characteristics in a finite element framework;
� multiresolution, unstructured, triangular grid;
� SC applicabble only in the first order and too dissipative;
� not clear how to proceed to 3D from there.
� see also Bruls et al (2006):short characteristics with unstructured

triangular grid.
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Some “unconventional” aproaches

� Hübner and Turek (2007):
� a “very mathematical” paper;
� short characteristics;
� extension of ALI, generalized mean intensity;
� highly unstructured meshes.

� Juvela and Padoan (2005):
� MHD simulation interstellar clouds with AMR;
� separate grid for RT;
� NLTE: ALI + cobined long short characteristics;
� optimized memory use, not in parallel (?).
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Some “unconventional” aproaches

� Meier (1999): Finite elements:
� adaptive mesh can extend into the time domain;
� equations written in a compact form on a simple grid;
� computationally expensive;
� for fluid - finite volumes.

� Richling et al (2001):
� Radiative transfer with Meier’s finite elements.
� Comparison to Monte Carlo.
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