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Neutral atoms in the solar atmosphere
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Neutral helium vs neutral hydrogen

GWF
The ratio of neutral helium and neutral hydrogen number densities is increased in the
temperature interval 10000-40000 K.

0.25f |
02} |
“a |
2 0.15)
01f

0.05F

x 10"

FAL93-3 model (Fontenla et al. 1993)



Multi-fluid equations

We consider partially ionized incompressible plasma which consists of electrons, protons,
singly ionized helium, neutral hydrogen and neutral helium atoms

We neglect the viscosity, the heat flux, and the heat production due to collision between
particles. Then the governing equations are:
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Multi-fluid equations

For time scales longer than ion-electron collision time, the electron and ion gases can be
considered as a single fluid. Then the five-fluid descrlptlon can be changed by three-fluid
description, where one component is the charged fluid (electron+protons+singly ionized
helium) and other two components are the gases of neutral hydrogen and neutral helium

gases.
We use the definition of total density of charged fluid

Po = P+ T Pre-
and the total velocity of charged fluid as
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The sum of momentum equations for electrons, protons and singly ionized helium is
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where W=V . -V __ isthe relative velocity of protons and helium ions.



Three-fluid equations

It can be shown that \W\ << M for the time scales longer than ion gyro period.
Then we obtain the three-fluid equations as
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Multi-fluid linear equations

We consider the wave propagation along unperturbed magnetic field, which is directed
along the z axis. Then the linear Alfvén waves polarized in the y direction are governed by
equations
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Homogeneous plasma

We consider a homogeneous plasma and after Fourier transform derive the dispersion
relation of Alfvén waves in the three-fluid plasma
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The dispersion relation has four different roots: the two complex solutions, which

correspond to Alfvén waves damped by ion-neutral collision and two purely irﬁaginary

solutions, which correspond to damped vortex solutions of neutral hydrogen and neutral
helium fluids.

We consider only Alfvén waves.



Upper chromosphere

Chromosphere: 1995 km height above the photosphere.
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Upper chromosphere

Chromosphere: 2015 km height above the photosphere.
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Collision frequencies

Mean ion-neutral collision frequency is (Zagarashvili et al. 2011)
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The collision frequency is very high in the photosphere, but decreases upwards.

The collision frequency between protons and neutral hydrogen atoms estimated from
FAL93-3 model can be estimated as

z=0: Zz=900: z=1900:

v, =8.610° Hz 6.2 10° Hz 24 Hz

n

This means that the Alfvén waves with periods > 1 s can be easily considered in the
single-fluid approach.



Alfvén waves in single-fluid MHD

GWE

We consider the total density

P=Pot Pu T Pre
total velocity
V, = Poly + Py + Preley |
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relative velocity between ions and neutral hydrogen

Wy = U, — Uy,

and relative velocity between ions and neutral helium

WHe - uy o uHey'

Then we find that
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Alfvén waves in single-fluid MHD

GWE

Consecutive subtractions of multi-fluid equations and neglect of inertial terms leads to the

equations
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Then the sum of multi-fluid equations leads to the single-fluid equations
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Is the coefficient of Cowling diffusion.



Dispersion relation

From these two equations we get
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For homogeneous atmosphere we have
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Real part of the complex frequency gives cut-off wave number
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Dispersion relation

Normalized damping rate is
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In the low chromosphere , where plasma is only weakly ionized, we have ¢, >>«,,,,,, therefore
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This expression was used by De Pontieu et al. (2001) and Soler et al. (2010).

On the other hand, in higher regions of the chromosphere, where ¢, <<a,, @, We

have
2 2
‘a"jl‘ziszA|:pH _|_pHe:|_
2 p oy

In the middle chromosphere, spicules and prominences the general expression
should be used.



Faint cell center area (FAL93-A)
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Bright network (FAL93-F)
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Prominence cores
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Conclusions

» The ratio of neutral helium and neutral hydrogen number densities is increased for
T=10000-40000 K.

« Consequently, neutral helium atoms significantly enhance the damping of Alfvén
waves in the chromospheric, spicule and prominence plasma for T=8000-40000 K.

» The multi-fluid approach reveals that the damping rate is maximal near ion-neutral
collision frequency and then decreases for higher harmonics.

» The single-fluid approach is valid for the Alfvén waves with longer period (> 1 s).

« The expression of damping rate, which has been frequently used, is only valid for
weakly ionized plasma.

« The modified expression of damping rate should be used in higher chromosphere,
spicules and prominences.
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