Ministerio de Economía y Competitividad Gobierno de Canarias Universidad de La Laguna CSIC Centro de Excelencia Severo Ochoa

Galería de Resultados

Seleccione el año: 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |

· Ver más resultados destacados de este año.

Los primeros espectros de dos objetos trans-Neptunianos extremos obtenidos con GTC reafirman la hipótesis del “Planeta Nueve”

Autor/es: J. de León, C. de la Fuente Marcos, R. de la Fuente Marcos

Referencia: MNRAS 2017, 467, L66 | Enlace

La imagen de la izquierda muestra una composición de cuatro imágenes de adquisición tomadas a lo largo de cuatro noches consecutivas (4, 5, 6 y 7 de Septiembre de 2016) con el instrumento OSIRIS en GTC y el filtro Sloan r’. En ellas se puede ver uno de los ETNOs estudiados en este trabajo, 2013 RF98, moviéndose a lo largo del campo. A la derecha mostramos los espectros en el rango visible de ambos objetos, obtenidos con el grisma R300 y una rendija de 2.5”. Las líneas rojas se corresponden con el ajuste realizado para calcular la pendiente espectral.
La imagen de la izquierda muestra una composición de cuatro imágenes de adquisición tomadas a lo largo de cuatro noches consecutivas (4, 5, 6 y 7 de Septiembre de 2016) con el instrumento OSIRIS en GTC y el filtro Sloan r’. En ellas se puede ver uno de los ETNOs estudiados en este trabajo, 2013 RF98, moviéndose a lo largo del campo. A la derecha mostramos los espectros en el rango visible de ambos objetos, obtenidos con el grisma R300 y una rendija de 2.5”. Las líneas rojas se corresponden con el ajuste realizado para calcular la pendiente espectral.

Los denominados objetos trans-Neptunianos extremos (ETNOs) se encuentran orbitando al Sol a distancias heliocéntricas superiores a 150 UAs y su descubrimiento, hace apenas una década, supuso un punto de inflexión en nuestro conocimiento sobre el Sistema Solar exterior. Hasta la fecha se han identificado un total de 21 ETNOs y solo uno, Sedna, ha sido observado espectroscópicamente. En los últimos años diversos trabajos han planteado la posibilidad de la existencia de uno o varios planetas de varias masas terrestres orbitando a cientos de UAs para explicar las propiedades dinámicas de los ETNOs. En 2016, Brown y Batygin usaron las órbitas de siete de estos ETNOs para predecir la existencia de una super-Tierra en el rango de masas de planetas sub-neptunianos orbitando a unas 700 UAs del Sol: es la denominada hipótesis del “Planeta Nueve”. Entre estos siete ETNOs existe un par, 2004 VN112 – 2013 RF98 que presenta órbitas casi idénticas, con una separación angular extremadamente pequeña entre las direcciones tanto de sus perihelios como de sus polos orbitales. Esto sugiere un origen dinámico común: en septiembre de 2016 utilizamos la cámara-espectrógrafo OSIRIS del telescopio de 10.4m GTC para obtener los espectros en el rango visible de este par de ETNOs y saber si, además, este par presentaba un origen físico común. Las pendientes espectrales obtenidas para ambos objetos son prácticamente idénticas, 12 ± 2 %/1000Å y 15 ± 2 %/1000Å para 2004 VN112 y 2013 RF98, respectivamente, y similares a los valores obtenidos a partir de observaciones fotométricas de 2000 CR105 (14 %) y 2012 VP113 (13%). Estos valores indican la posible presencia de silicatos amorfos en la superficie de estos objetos, que en ningún caso estarán dominadas por orgánicos complejos o “tholins”. En contraste, Sedna presenta un valor de 42%, muy diferente del resto de ETNOs, lo que indica la presencia de material orgánico en su superficie. Estos cinco objetos forman parte del grupo de siete ETNOs utilizado para plantear la hipótesis del Planeta Nueve, sugiriendo que todos deben tener una región de origen común, salvo Sedna, que se cree proviene de la zona interna de la nube de Oort. Dado que la obtención de pendientes espectrales similares para el par 2004 VN112 – 2013 RF98 sugiere un origen físico común, nos planteamos la posibilidad de que este par hubiera sido en su día un asteroide binario que quedó desligado por un encuentro con un objeto más masivo. Para validar esta hipótesis llevamos a cabo miles de simulaciones numéricas, analizando la evolución de la separación angular de los polos orbitales de estos dos objetos con el tiempo. Nuestros resultados sugieren que un planeta con una masa de entre 10 y 20 masas terrestres, en una órbita con semieje mayor entre 300 y 600 UAs, excentricidad entre 0.1 y 0.4 e inclinación entre 20 y 50 grados, podría desligar nuestro asteroide binario en escalas de tiempo entre 5 y 10 millones de años.

Utilizamos cookies propias y de terceros para recoger información estadística y mejorar nuestra web y servicios. Si continúa navegando, acepta su instalación y uso.
Puede cambiar la configuración de su navegador para no aceptar su instalación u obtener más información en nuestra política de cookies.

Aceptar