Ministerio de Ciencia, Innovación y Universidades Gobierno de Canarias Universidad de La Laguna CSIC Centro de Excelencia Severo Ochoa

Results Gallery

Select a year: 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |

· More scientific highlights from this year.

Intracluster light: a luminous tracer for dark matter in clusters of galaxies

Author/s: M. Montes, I. Trujillo

Reference: 2019 MNRAS 482 2838 | Link

Image of the galaxy cluster Abell S1063 located at 4000 million light years away. Overplotted to the image of the cluster are the dark matter contours (violet) and the diffuse instracluster light (green). Both contours are distributed very similarly.
Image of the galaxy cluster Abell S1063 located at 4000 million light years away. Overplotted to the image of the cluster are the dark matter contours (violet) and the diffuse instracluster light (green). Both contours are distributed very similarly.

The bulk of stars in galaxy clusters are confined within their constituent galaxies. Those stars do not trace the extended distribution of dark matter well as they are located in the central regions of the cluster's dark matter subhaloes. A small fraction of stars is expected, however, to follow the global dark matter shape of the cluster. These are the stars whose extended spatial distribution results from the merging activity of galaxies and form the intracluster light (ICL). In this work, we compare the bi-dimensional distribution of dark matter in massive galaxy clusters (as traced by gravitational lensing models) with the distribution of the ICL. To do that, we use the superb data from the Hubble Frontier Fields Initiative. Using the Modified Hausdorff distance (MHD) as a way of quantifying the similarities between the mass and ICL distributions, we find an excellent agreement (MHD ˜ 25 kpc) between the two components. This result shows that the ICL exquisitely follows the global dark matter distribution, providing an accurate luminous tracer of dark matter. This finding opens up the possibility of exploring the distribution of dark matter in galaxy clusters in detail using only deep imaging observations.

We use our own cookies and cookies from a third party to gather statistical information to improve our services and our website. If you continue with the navigation, you are accepting the installation and use of these cookies. You can change the configuration of your browser not to accept the installation or you can obtain more information in our Cookie Policy.

OK