I CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

"SOLAR OBSERVATIONS: TECHNIQUES AND INTERPRETATION"

Instituto de Astrofísica de Canarias and Universidad Internacional Menéndez Pelayo
October 23th - November 3th, 1989 
La Laguna, Canary Islands, Spain
Organizing Committee: 
F. Sánchez, M. Collados, M. Vázquez..


 Programme

High Spatial Resolution Tecniques.
Prof. Oscar von der Lühe. Institute of Astronomy. Zurich. Switzerland.

Magnetic Field Measurements.
Prof. E. Landi degl'Innocenti. Istituto di Astronomia. Florence. Italy.

Topics on Helioseismology.
Prof. D.O. Gough. Institute of Astronomy. Cambridge. U.K.

Solar Telescopes.
Prof. G. Scharmer. Stockholm Observatory. Sweden.

Solar Post-Focus Instrumentation.
Prof. H. Wöhl. Kiepenheuer Institut. Freiburg. Germany.

Dynamics of the Solar Atmosphere.
Prof. P. Mein. Observatoire de Paris-Meudon. France.


"HIGH SPATIAL RESOLUTION TECNIQUES"

Prof. Oscar von der Lühe.
Institute of Astronomy. Zurich. Switzerland.

1.- INTRODUCTION.

2.- BASIC CONSIDERATIONS AND CONCEPTS.

2.1.- Diffraction and optical transfer.
2.2.- Coherence, Van Cittert - Zeernike theorem.

3.- WAVE PROPAGATION THROUGH THE ATMOSPHERE.

3.1.- Statistics of index of refraction fluctuations.
3.2.- Mutual intensity of a wave disturbed by turbulence.
3.3.- Structure functions.
3.4.- The instantaneous optical transfer function.

4.- SINGLE FRAME ANALYSIS.

4.1.- Data collection and preparation.
4.2.- Image selection.
4.3.- Single picture restoration.
4.4.- Time series analysis.

5.- INTERFEROMETRY.

5.1.- Michelson Interferometry.
5.2.- Interferometric Arrays.
5.3.- Speckle Interferometry.

The Labeyrie method.
Seeing calibration.
Noise calibration.
Speckle Imaging, Knox-Thompson.
Speckle Imaging, Speckle Masking.
Speckle Interferometry and Anisoplanatism.

6.- ACTIVE WAVEFRONT COMPENSATION.

6.1.- Image motion compensation.
6.2.- Adaptive Optics.

7.- OTHER METHODS.

7.1.- Radio observations.
7.2.- High resolution observations from space.

Solar Optical Universal Polarimeter.
Orbiting Solar Laboratory.
Solar and Heliospheric Observatory.

"MAGNETIC FIELD MEASUREMENTS"

Prof. E. Landi degl'Innocenti
Istituto di Astronomia. Florence. Italy.

1.- DESCRIPTION OF POLARIZED RADIATION.

2.- A PROTOTYPE POLARIMETER.

2.1.- Setting of various devices at fixed angles.
2.2.- Measurements with rotating wave plates.
2.3.- Measurements with variable retarders.

3.- PHYSICAL COMPONENTS OF POLARIMETERS.

3.1.- Polarizers.
3.2.- Retarders.

4.- GENERALITIES ON POLARIZATION PHENOMENA IN SPECTRAL LINES.

4.1.- Zeeman effect.
4.2.- Impact and resonance polarization.
4.3.- Resonance polarization and the Hanle effect.

4.4.- The role of collisions in resonance polarization.
4.5.- A classification scheme for polarimetric observations.

5.- RADIATIVE TRANSFER FOR POLARIZED RADIATION.
6.- LINE FORMATION IN A MAGNETIC FIELD.
7.- TRANSFER EQUATIONS FOR THE STOKES PARAMETERS IN A MAGNETIZED ATMOSPHERE.
8.-SOLUTIONS OF THE TRANSFER EQUATIONS AND MAGNETIC FIELD MEASUREMENTS.

8.1.- Weak field solution.
8.2.- Solution for a Milne-Eddington atmosphere.
8.3.- More general analytical solutions.
8.4.- Numerical solutions.
8.5.- Particular solutions.

9.- MAGNETIC FIELD MEASUREMENTS IN UNRESOLVED STRUCTURES.

9.1.- The Line Ratio Technique.

10.- MAGNETIC FIELD MEASUREMENTS IN PROMINENCES.

"TOPICS ON HELIOSEISMOLOGY"

Prof. D.O. Gough.
Institute of Astronomy. Cambridge. U.K.

 

"SOLAR TELESCOPES"

Prof. G. Scharmer
Stockholm Observatory. Sweden.

 

"SOLAR POST-FOCUS INSTRUMENTATION"

Prof. H. Wöhl.
Kiepenheuer Institut. Freiburg. Germany.

1.- GENERAL REMARKS CONCERNING THIS LECTURE.

2.- LOCATIONS OF POST - FOCUS INSTRUMENTATION.

3.- POST - FOCUS IMAGING.

4.- SPECTROMETERS.

4.1.- Prismspectrometer.
4.2.- Plane grating spectrometer.
4.3.- Concave grating spectrometer.
4.4.- Fourier Transform Spectrometer.

4.5.- Fabry - Perot Spectrometer.
4.6.- Pinhole photometer.

5.- DETECTORS FOR SPECTROMETERS.

5.1.- Photographic film.
5.2.- Photomultiplier.
5.3.- Linear photodiode array.
5.4.- Two-dimensional photodiode array.
5.5.- Image intensifier.

6.- SPECIAL INSTRUMENTS AT SPECTROMETER FOCI.

6.1.- Spectrum scanner.
6.2.- Doppler compensator.
6.3.- Spectroheliograph.

7.- INSTRUMENT CONTROL.

8.- DATA COLLECTION.

9.- DATA REDUCTION.

10.- FURTHER READING AND BIBLIOGRAPHY.

"DYNAMICS OF THE SOLAR ATMOSPHERE"

Prof. P. Mein.
Observatoire de Paris-Meudon. France.

1.- INTRODUCTION.

2.- OUTLINE OF THE SOLAR STRUCTURE.

2.1.- Internal Sun.
2.2.- Solar Atmosphere.
2.3.- Solar Activity.

3.- ONE-DIMENSION NON-MAGNETIC MODEL ATMOSPHERE CONTINUUM AND SPECTRAL LINE FORMATION.

3.1.- Model Atmosphere.
3.2.- Spectral intensity and source function.
3.3.- Formation of the continuos spectrum.

3.4.- Formation of spectral lines.

4.- DIAGNOSTIC METHODS FOR VELOCITY MEASUREMENTS.

4.1.- In situ measurements.
4.2.- Indirect measurements.
4.3.- Intensity measurements (continuum and lines).
4.4.- Dopplershifts of line profiles.
4.5.- Averaging effects in line Doppler-Shifts.
4.6.- Instrumental aspects: velocity measurements.

5.- ROTATION AND CONVECTION.

5.1.- Introduction.
5.2.- Solar rotation from Doppler measurements.
5.3.- Solar rotation from tracers.

5.4.- Large-scale meridional circulation.
5.5.- Convection: Intermediate and small scales.

6.- WAVES IN THE NON-MAGNETIC ATMOSPHERE.

6.1.- Introduction: the five minutes oscillations.
6.2.- The k - omega Diagram.
6.3.- Power spectrum in the k - omega diagram.
6.4.- Phase-lags between two lines or between intensity and Dopplershift.
6.5.- Mechanical energy flux.
6.6.- Coronal heating.

7.- MOTIONS IN MAGNETIC FLUX TUBES AND SPOTS.

7.1.- Introduction.
7.2.- Magnetic flux tubes.
7.3.- Velocity field in spots.

8.- VELOCITY FIELDS IN PROMINENCES AND FILAMENTS.

8.1.- Classification, Structure.
8.2.- Velocity Measurements.
8.3.- Steady flows.
8.4.- Oscillations.
8.5.- Instabilities: "Disparitions Brusques", Eruptions.

9.- MASS EJECTIONS - INSTABILITIES.

10.- CONCLUSION.