II CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

"OBSERVATIONAL AND PHYSICAL COSMOLOGY"

Instituto de Astrofísica de Canarias and Universidad Internacional Menéndez Pelayo
December 3rd - 14th, 1990 
Puerto de la Cruz, Tenerife, Canary Islands, Spain
Organizing Committee: 
F. Sánchez, M. Collados, R. Rebolo

Programme

Lectures on the very Early Universe.
Prof. V.N. Lukash 1,2 and Prof. I.D. Novikov 11: Astro Space Centre, Academy of Science of USSR.2: Department of Theoretical Physics, Universidad del País Vasco. Bilbao. Spain.

Primordial Nucleosynthesis.
Prof. Hubert Reeves. Service d'Astrophysique, C.E.N. and Institut d'Astrophysique de Paris, France.

Big Bang Nucleosynthesis and Abundances of Light Elements.
Prof. Bernard E.J. Pagel. NORDITA. Denmark.

The Microwave Sky.
Prof. José Luis Sanz. Departamento de Física Moderna. Universidad de Cantabria. Santander. Spain.

The Large Scales Structure of the Universe.
Prof. Bernard J.T. Jones. Astronomy Center, Sussex University, UK and Niels Bohr Institute, University of Copenhagen, DK.

Large-Scale Structure of the Universe.
Prof. Jaan Einasto. Tartu Astrophysical Observatory, Estonia.


"LECTURES ON THE VERY EARLY UNIVERSE"

Prof. V.N. Lukash 1,2 and Prof. I.D. Novikov 1

1: Astro Space Centre, Academy of Science of USSR.
2: Department of Theoretical Physics, University of Basque Country. Bilbao. Spain.

1.- INSTEAD OF AN INTRODUCTION.
2.- THE THEORY OF POTENTIAL PERTURBATIONS IN FRIEDMANN WORLD.

2.1.- Physical Meaning of the Parametric Amplification.
2.2.- Lagrangian and the Perturbation Theory.
2.3.- Potential Pertubations in Friedmann Cosmology.
2.4.- Quantization and Conformal Non-Invariance.

3.- ORIGIN OF PRIMORDIAL COSMOLOGICAL PERTURBATIONS.

3.1.- Scattering Problem for q-Field.
3.2.- Generation of Perturbations on Infration.

4.- INFLATION.

4.1.- Chaotic Inflation.
4.2.- Stochastic Theory of q-Field.
4.3.- Non-Linear Inflation.

5.- TESTING INFLATION.

5.1.- Transfer Functions.
5.2.- Observations.
5.3.- Modelling the Great Attractor.

6.- IN PLACE OF A DISCUSSION.

7.- APPENDIX A

8.- APPENDIX B

9.- APPENDIX C

"PRIMORDIAL NUCLEOSYNTHESIS"

Prof. Hubert Reeves
Service d'Astrophysique, C.E.N. and Institut d'Astrophysique de Paris, France.

1.- THE THERMAL HISTORY OF MATTER.

1.1.- Cosmic densities.
1.2.- Reaching for the past.
1.3.- Cosmic timescales.

1.3.1.- The expansion timescale.
1.3.2.- The reaction timescales.

2.- PRIMORDIAL NUCLEOSYNTHESIS.

2.1.- Nucleosynthetic yields.

3.- TESTING COSMOLOGICAL MODELS.

3.1.- Proliferation of particle families.
3.2.- Evidence from the width of the Z.
3.3.- Evidence from mass renormalisation.
3.4.- Evidence from primordial nucleosynthesis.

4.- A MULTIDIMENSIONAL UNIVERSE.

5.- THE COSMIC QUAK-HADRON PHASE TRANSITION.

5.1.- Recipes for the glue.

6.- THE PHASE DIAGRAM.

6.1.- Exploring the phase diagram.

7.- THE PHYSICS OF THE PHASE DIAGRAM.

7.1.- Energy densities in the two phases.

7.1.1.- The bag models.
7.1.2.- A simple model of the Q-H phase transition.

7.2.- Order parameters of the phase transition.

8.- COSMIC SCENARIO.

 

"BIG BANG NUCLEOSYNTHESIS AND ABUNDANCES OF LIGHT ELEMENTS"

Prof. Bernard E.J. Pagel.
NORDITA. Denmark.

1.- INTRODUCTION.

1.1.- The hot Big Bang.
1.2.- Primordial Nucleosynthesis.
1.3.- Non-standard BBNS models.
1.4.- Primordial abundances.

2.- DEUTERIUM AND 3 He.

2.1.- Deuterium.
2.2.- Helium 3.
2.3.- Primordial D+3 He.

3.- LITHIUM 7.

3.1.- Lithium in the galaxy.
3.2.- Lithium in the galaxy.

4.- HELIUM 4.

4.1.- Introduction.
4.2.- Recombination lines in nebulae.

4.3.- Complications in emission-line analysis.
4.4.- Newer results.
4.5.- The primordial helium abundance.

"THE MICROWAVE SKY"

Prof. José Luis Sanz.
Departamento de Física Moderna. Universidad de Cantabria. Santander. Spain.

1.- ABSTRACT.

2.- INTRODUCTION.

3.- SPECTRUM.

4.- ANISOTROPIES.

4.1.- Techniques.
4.2.- Primary Anisotropies.

4.2.1.- Sources of anisotropies.
4.2.2.- Theories of galaxy formation.
4.2.3.- Large-scale anisotropy and the primordial spectrum.
4.2.4.- Intermediate-scale anisotropy and theories of galaxy formation.

4.2.5.- The texture of the CMB.
4.2.6.- Comments and criticisms.

5.- SECONDARY ANISOTROPIES.

5.1.- Non-linear density fluctuations.
5.2.- Hot intracluster gas and peculiar velocities of clusters.
5.3.- Reionization and non-linear flows.
5.4.- Dust.

6.- CONCLUSIONS.

"THE LARGE SCALE STRUCTURE OF THE UNIVERSE"

Prof. Bernard J.T. Jones.
Astronomy Center, Sussex University, UK
and
Niels Bohr Institute, University of Copenhagen, DK

1.- OVERVIEW.

1.1.- The Universe at Large.

1.1.1.- Homogeneity and Isotropy.
1.1.2.- Scale Factors, Redshifts and all that.

1.1.3.- Important quantities: Ho ,Omegao , Rhoc .

1.2.- The Hubble Parameter h.
1.3.- The Cosmological Constant Lambda.

1.3.1.- Expansion with Lambda.
1.3.2.- The lambda parameter.
1.3.3.- Why introduce Lambda?

1.4.- The Value of Omegao.

1.4.1.- The Deceleration Parameter qo .
1.4.2.- The classical approach again.
1.4.3.- Cosmic Nucleosynthesis.
1.4.4.- Omegao from Hubble flow deviations.

1.5.- Omega = 1, Dark Matter and Inflation.

1.5.1.- Flatness and inflaction.

2.- INHOMOGENEOUS UNIVERSE-OBSERVATIONS.

2.1.- Preliminaries.

2.1.1.- 2-Point Correlation Functions.
2.1.2.- The Power Spectrum.
2.1.3.- Biasing.

2.2.- Projected Surveys.
2.3.- Redshift Surveys.

2.3.1.- Optical Galaxy Samples.
2.3.2.- Surveys based on the IRAS catalogue.
2.3.3.- Pencil Beam Surveys.

2.4.- Surveys with Independent Distance Estimates.

2.4.1.- The Rubin-Ford Effect.
2.4.2.- Samples of Elliptical Galaxies.
2.4.3.- Samples of spiral galaxies.
2.4.4.- The "Real" 3-Dimensional Distribution.

2.5.- Clusters and Voids.

2.5.1.- Galaxy Clusters.
2.5.2.- The Cluster-Cluster Correlation Function.
2.5.3.- Voids.

2.6.- Great Attractors, Dipoles and all that.

2.6.1.- The Great Attractor and Others.
2.6.2.- Dipole Convergence.
2.6.3.- Large Scale Flows and CBR Anisotropy.

2.7.- Velocity Correlations.

3.- CLUSTERING MEASURES.

3.1.- Two-Point Correlation Functions.
3.2.- Higher Order Correlation Functions.
3.3.- Counts in cells.
3.4.- Genus.
3.5.- Multi-Fractals.

4.- THE INHOMOGENEOUS UNIVERSE-THEORY.

4.1.- The Origin of the Fluctuation Spectrum.
4.2.- Modelling the Evolution of Large Scale Structure.

4.2.1.- CDM models.
4.2.2.- CDM with "gas".
4.2.3.- Adhesion Model.
4.2.4.- Classical Pancakes.
4.2.5.- Decaying WIMPS.

4.3.- Formation of Galaxy Clusters.
4.4.- Understanding Large Scale Structure.

5.- CONCLUSIONS.

"LARGE-SCALE STRUCTURE OF THE UNIVERSE"

Prof. Jaan Einasto
Tartu Astrophysical Observatory, Estonia.

1.- INTRODUCTION.

2.- MODELLING THE STRUCTURE.

2.1.- Basic Equations.
2.2.- Initial Conditions.
2.3.- Structure Formation in Different Scenarios.
2.4.- Biased Galaxy Formation.

3.- DYNAMICAL PROPERTIES OF THE UNIVERSE.

3.1.- Masses of Clusters of Galaxies.
3.2.- Masses of Galaxies.
3.3.- Mean Density of Matter Associated with Galaxies.
3.4.- Mean Density of Matter in Voids.
3.5.- Mean Density of Matter in the Universe.

4.- STATISTICAL DESCRIPTION OF THE STRUCTURE.

4.1.- Cluster and Percolation Analysis.
4.2.- Correlation Function.
4.3.- Void Probability Function.
4.4.- Topological properties.
4.5.- Fractal properties.

5.- GEOMETRICAL PROPERTIES OF THE UNIVERSE.

5.1.- Catalogues of Galaxies and Clusters of Galaxies.
5.2.- Distances of Galaxies and Clusters.
5.3.- Clusters, Filaments and Superclusters of Galaxies.
5.4.- Voids.
5.5.- Distribution of Galaxies of Different Morphological Type and Luminosity.
5.6.- Structure on Very Large Scales.
5.7.- Velocities.

6.- DETERMINATION OF THE DENSITY, POTENTIAL AND VELOCITY FIELDS.

6.1.- Density, Potential and Velocity Fields.
6.2.- Determination of the Matter Density and Potential Fields from Galaxy Data.
6.3.- Reconstruction of Initial Conditions.