III CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

"STAR FORMATION IN STELLAR"

Instituto de Astrofísica de Canarias and Universidad Internacional Menéndez Pelayo
December 2nd - 13th, 1991 
Puerto de la Cruz, Tenerife, Canary Islands, Spain
Organizing Committee: 
F. Sánchez, G. Tenorio-Tagle, M. Prieto

Programme

Basic Physics of Star Formation.
Prof. Peter Bodenheimer. UCO/Link Observatory. University of California. USA.

Regions of Recent Star Formation.
Prof. Deidre A. Hunter. Lowell Observatory. U.S.A.

Galaxy Formation and Evolution.
Prof. Richard B. Larson. Yale Astronomy Department. U.S.A.

The History of Star Formation in Galaxies.
Prof. Robert C. Kennicutt, Jr. Steward Observatory. Univ. of Arizona. USA.

OB Associatioins and Superassociations.
Prof. Jorge Melnick. European Southern Observatory (ESO). Chile.

Triggered Star Formation.
Prof. Bruce G. Elmegreen. IBM Research Division, T.J. Watson Research Center. USA.

Violent Star Formation in Merging Galaxies.
Prof. I. F. Mirabel. Service d'astrophysique. Centre d'etudes de Saclay. France.

Large-Scale Propagating Star Formation.
Prof. José Franco. Instituto de Astronomía- UNAM. México.


"BASIC PHYSICS OF STAR FORMATION"

Prof. Peter Bodenheimer.
UCO/Link Observatory. University of California. USA.

1.- OVERVIEW.

1.1.- Basic questions.
1.2.- Examples of young objects.
1.3.- Initial conditions for star formation.
1.4.- Physical processes in star formation.
1.5.- Star formation phases.

2.- STAR FORMATION PHASE.

2.1.- Heating and cooling.
2.2.- Magnetic braking.
2.3.- Degree of ionization.
2.4.- Magnetic diffusion.

3.- PROTOSTAR COLLAPSE.

3.1.- Isothermal collapse.
3.2.- Adiabatic collapse.
3.3.- Accretion phase.
3.4.- Rotating protostars.

4.- EVOLUTION OF DISKS.

4.1.- Observations.
4.2.- Basic theory of disk evolution.
4.3.- General results of disk evolution.
4.4.- Summary of disk evolution.

5.- FORMATION OF BINARY SYSTEMS.

5.1.- Observational Data.
5.2.- Basic formation mechanisms.
5.3.- Capture.
5.4.- Fission.
5.5.- Fragmentation.
5.6.- Disk fragmentation.
5.7.- Summary.

"REGIONS OF RECENT STAR FORMATION"

Prof. Deidre A. Hunter.
Lowell Observatory. U.S.A.

1.- OBSERVABLES OF STAR-FORMING REGIONS.

1.1.- Ranges in Scales.
1.2.- The Zoo Within Star-Forming Regions.

1.2.1.- Molecular Gas.
1.2.2.- Reprocessed Starlight.
1.2.3.- Stars.
1.2.4.- Masers.
1.2.5.- Hot Gas.

2.- THE EVOLUTION OF STAR-FORMING REGIONS.

2.1.- The Action of Young Stars.
2.2.- Large-scale Structures.
2.3.- The Case of Other Irregular Galaxies.
2.4.- Even Larger Scale Phenomena.

3.- STAR-FORMING REGIONS IN DIFFERENT GALACTIC ENVIRONMENTS.

3.1.- Distributions of Neutral Gas.

3.1.1.- The Milky Way.
3.1.2.- Other Spiral Galaxies.
3.1.3.- Irregular Galaxies.
3.1.4.- SO Galaxies.
3.1.5.- Gas in the Outer Parts of Galaxies.

3.2.- Distributions of Star-forming Regions.
3.3.- Sizes of Star-forming Regions.
3.4.- Efficiencies of Star Formation.

4.- THE IMF.

4.1.- Introduction.
4.2.- Proceedures and Problems.
4.3.- Results from the Milky Way.
4.4.- Different Galactic Environments.
4.5.- Local Conditions.

"GALAXY FORMATION AND EVOLUTION"

Prof. Richard B. Larson.
Yale Astronomy Department. U.S.A.

1.- INTRODUCTION.

2.- THE ORIGINS OF GALAXY MORPHOLOGY.

2.1.- Some Systematic Properties of Galaxies.
2.2.- Galaxy Formation in a Universe Dominated by Dark Matter.
2.3.- Evolution of Protogalaxies: Collapse Models.
2.4.- Mergers and Accretion.
2.5.- Summary.

3.- LARGE-SCALE STAR FORMATION IN GALAXIES.

3.1.- Gas Condensation in Dark Halos.
3.2.- Stability of Gas Sheets and Disks.
3.3.- Large-Scale Star Formation Processes.
3.4.- Star Formation Rates in Galaxies.
3.5.- Starbursts.

4.- GALACTIC EVOLUTION AND THE STELLAR IMF.

4.1.- History of Star Formation.
4.2.- Chemical Evolution.
4.3.- Gas Depletion and Infall.
4.4.- The Initial Mass Function.
4.5.- Some Ideas on the Origin of the IMF.

5.- EARLY GALACTIC EVOLUTION AND THE FORMATION OF GLOBULAR CLUSTERS.

5.1.- Properties of the Galactic Halo.
5.2.- Implications of Galaxy Formation Simulations.
5.3.- The Galactic Fossil Record.
5.4.- Formation of Globular Clusters.
5.5.- Lookback Observations.

"THE HISTORY OF STAR FORMATION IN GALAXIES"

Prof. Robert C. Kennicutt, Jr.
Steward Observatory. Univ. of Arizona. USA.

1.- INTRODUCTION.

2.- THE MILKY WAY GALAXY.

2.1.- The Galactic Spheroid.
2.2.- The Galactic Disk.

2.2.1.- Isochrone Ages.
2.2.2.- Chromospheric Ages.
2.2.3.- White Dwarf Luminosity Function.
2.2.4.- Continuity of the Initial Mass Function.
2.2.5.- Other Methods.

2.3.- Conclusions.

3.- RESOLVED STARS IN OTHER GALAXIES.

3.1.- Magellanic Clouds.
3.2.- Dwarf Spheroidal Galaxies in the Local Group.
3.3.- Summary.

4.- MEASUREMENT OF STAR FORMATION RATES.

4.1.- Resolved Stars.
4.2.- Synthesis Modelling of Integrated Colors and Spectra.
4.3.- Ultraviolet Fluxes and Colors.
4.4.- Ionization Rates: Lyman Continuum Photon Counting.

4.4.1.- H alpha
4.4.2.- Other Optical Emission Lines.
4.4.3.- Lyman Series.
4.4.4.- Infrared and Submillimeter Recombination Lines.
4.4.5.- Thermal Radio Continuum.
4.4.6.- Determination of Star Formation Rates.

4.5.- Far-Infrared Fluxes and Colors.
4.6.- Accuracy of Global Star Formation Rates.

4.6.1.- Comparison of Different Methods.
4.6.2.- The Initial Mass Function.
4.6.3.- Conclusions.

5.- GLOBAL STAR FORMATION PROPERTIES.

6.- STAR FORMATION HISTORIES.

6.1.- Ellipticals, S0 Galaxies, and Bulges.
6.2.- Spiral and Irregular Galaxies.
6.3.- Gas Consumption Time Scales.

7.- THE ROLE OF STARBURSTS.

7.1.- Starbursts in Nearby Interacting Galaxies.
7.2.- Massive Galaxies.
7.3.- Low-Mass Galaxies.
7.4.- Conclusions.

8.- CONCLUDING REMARKS.

"OB ASSOCIATIONS AND SUPERASSOCIATIONS"

Prof. Jorge Melnick
European Southern Observatory (ESO). Chile.

1.- OBSERVATIONAL PROPERTIES OF MASSIVE STARS.

1.1.- Evolutionary models for massive stars.
1.2.- Stellar Atmospheres.
1.3.- Observational properties of OB stars.

1.3.1.- Photometry.
1.3.2.- Spectral classification of massive star.

1.4.- Interstellar extinction.

2.- OB ASSOCIATIONS.

2.1.- Global properties of OB associations.
2.2.- The disruption of Molecular Clouds by OB associations.
2.3.- Sequential star formation in OB associations.
2.4.- OB associations in the Magellanic Clouds.
2.5.- Compact OB associations in the Magellanic Clouds.
2.6.- OB associations in other galaxies.
2.7.- Summary.

3.- SUPERASSOCIATIONS.

3.1.- The 30 Doradus superassociation.
3.2.- Giant HII regions.
3.3.- Starburst clusters.
3.4.- Superassociations in other galaxies.
3.5.- Summary.

4.- HII GALAXIES.

4.1.- The statistical properties of HII galaxies.

4.1.1.- The redshift distribution.
4.1.2.- HII galaxy luminosities.
4.1.3.- Hß equivalent widths.
4.1.4.- Abundances.

4.2.- The morphology of HII galaxies.
4.3.- The young stellar component of HII galaxies.

4.3.1.- The ionizing clusters of HII galaxies.
4.3.2.- The IMF of starburst clusters.
4.3.3.- Gas kinematics.

4.4.- The underlying stellar component in HII galaxies.
4.5.- Chemical evolution of HII galaxies.
4.6.- Nuclear starbursts: the starburst model for Active Galactic Nuclei.

4.6.1.- Warmers.
4.6.2.- The broad line region.
4.6.3.- The evolution of nuclear starburst cluster.

4.7.- Summary.

"TRIGGERED STAR FORMATION"

Prof. Bruce G. Elmegreen.
IBM Research Division, T.J. Watson Research Center. USA.

1.- OVERVIEW.

1.1.- Definitions of triggered star formation.
1.2.- Triggering by high pressure events.
1.3.- Propagating star formation.
1.4.- Time sequences of star formation.
1.5.- Mechanisms for spontaneous star formation.
1.6.- Mechanisms for triggered star formation.

2.- SMALL SCALE TRIGGERING.

2.1.- Introduction.
2.2.- Spherical compression of globules and clouds: observations and general theory.
2.3.- On the stability of compressed magnetic globules.

3.- INTERMEDIATE SCALE TRIGGERING.

3.1.- General properties.
3.2.- Collect and collapse: A change from globule squeezing.
3.3.- A collapse condition.
3.4.- Core-to-cloud density ratios after the layer collapses.
3.5.- Observations of small fragments behind schock fronts.
3.6.- Other shock-driving pressures.

4.- LARGE SCALE TRIGGERING.

4.1.- Introduction.
4.2.- Cloud shuffling.
4.3.- Triggering in giant shells.
4.4.- Gravitational instabilities in large expanding shells and rings.

5.- STAR FORMATION TRIGGERED BY CLOUD COLLISIONS.

6.- SPIRAL DENSITY WAVE TRIGGERING.

6.1.- Observations of the gas in spiral arms.
6.2.- Observations of triggered star formation.
6.3.- Star formation triggering by large scale instabilities.
6.4.- Runaway cloud growth in spiral arms.

7.- SUMMARY AND FURTHER APPLICATIONS.

 

"VIOLENT STAR FORMATION IN MERGING GALAXIES"

Prof. I. F. Mirabel.
Service d'astrophysique. Centre d'etudes de Saclay. France.

 

1.- INTRODUCTION.

1.1.- Luminous infrared galaxies.
1.2.- Historic background.

2.- LUMINOSITY FUNCTION.

3.- MORPHOLOGY.

3.1.- Optical morphology: mergers of spiral galaxies.
3.2.- Radio morphology: ultraluminous nuclear star-bursts.
3.3.- IR morphology: formation of ellipticals via merging.

4.- INTERSTELLAR COLD GAS.

4.1.- Atomic hydrogen: evidence for infalling gas.

4.1.4.- Molecular gas content.

4.2.- Efficiency of formation of molecular clouds and stars.
4.3.- Nuclear concentrations of dense interstellar gas.
4.4.- OH megamasers in luminous IR galaxies.

5.- NUCLEAR STARBURSTS AND AGN' s.

6.- INTERGALACTIC RECYCLING.

6.1.- Stripping matter by tidal interactions.
6.2.- Galactic super-winds.

 

"LARGE-SCALE PROPAGATING STAR FORMATION"

Prof. José Franco.
Instituto de Astronomía- UNAM. México.

1.- INTRODUCTION.

2.- THE OVERALL PHYSICAL SCHEME.

2.1.- The mass distribution.

2.2.1.- Tidal forces.
2.1.2.- System pressure.
2.1.3.- Disk stability.

2.2.- Energy and momentum sources.

2.2.1.- Radiative energy sources.
2.2.2.- Mechanical energy sources.

2.3.- Magnetic fields.
2.4.- Chemical abundances.

2.4.1.- Dust opacity.
2.4.2.- Hydrogen molecules.
2.4.3.- Molecular and Self-gravitating clouds.

3.- INDUCED STAR FORMATION.

3.1.- SFR-density relationships.
3.2.- Cloud collisions.
3.3.- Spiral Arms.

4.- SELF-PROPAGATED STAR FORMATION.

4.1.- Analytical schemes.

4.1.1.- Inside molecular clouds.
4.1.2.- Outside molecular clouds: the gaseous disk.

4.2.- Numerical schemes.

4.2.1.- Sheared multi-supernova remnants.

4.3.- The star-forming cycle.