IV CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

"INFRARED ASTRONOMY "

Instituto de Astrofísica de Canarias and Universidad Internacional Menéndez Pelayo
December 7th - 18th, 1992 
Adeje, Tenerife, Canary Islands, Spain
Organizing Committee: 
F. Sánchez, A. Mampaso, M. Prieto

Programme

Star Formation.
Prof. Francesco Palla. Osservatorio Astrofisico di Arcetri. Firenze. Italy.

Last Stages of Stellar Evolution.
Prof. S. R. Pottasch. Kapteyn Laboratory. The Netherlands.

The Milky Way Galaxy and the Galactic Centre.
Prof. Gerard Gilmore. Institute of Astronomy. U.K.

Galaxies in the Infrared.
Prof. Charles M. Telesco. NASA-Marshall Space Flight Center. Alabama. USA.

Cosmology.
Prof. R.D. Joseph. Institute for Astronomy. University of Hawaii. Honolulu. USA.

G25.5+0.2, A New Ring Nebula Around A Luminous Blue Star: Case Study for the Importance of IR Observations.
Prof. E.E. Becklin. Department of Astronomy. University of California. U.S.A.

Cosmic Grains.
Prof. N.C. Wickramasinghe. School of Mathematics. University of Wales College of Cardiff. U.K.

Infrared Instrumentation.
Prof. Ian S. McLean. University of California. Los Angeles. USA.

Infrared Astronomy with Satellites.
Prof. Thijs de Graauw. SRON Laboratory for Space Research and Kapteyn Institute.
University of Groningen. The Netherlands.

 


"STAR FORMATION "

Prof. Francesco Palla.
Osservatorio Astrofisoc di Arcetri. Firenze, Italy.

1.- INFRARED ASTRONOMY AND STAR FORMATION.

1.1.- The Quest for protostars.

1.2.- IRAS and Star Formation.

1.3.- The IR Classification Scheme.

1.4.- Modes and distribution of star formation.

1.4.1.- Simulated Star Formation.

1.4.2.- Spontaneous Star Formation.

2.- ISOLATED STAR FORMATION

2.1.- Protostellar collapse: the mass accretion rate.

2.1.1.- Classical Collapse Models.

2.1.2.- More realistic models.

2.2.- Protostellar evolution.

2.2.1.- Effects of the accretion flow.

2.2.2.- Conditions for star formation.

2.2.3.- Some observational tests.

3.- EARLY STELLAR EVOLUTION.

3.1.- Pre-Main-Sequence Evolution.

3.1.1.- Protostellar initial conditions.

3.1.2.- PMS evolution of low-mass stars.

3.1.3.- PMS evolution of intermediate-mass stars.

3.2.- Effects of mass accretion on PMS evolution.

3.3.- Infrared properties of PMS stars.

4.- COLLECTIVE STAR FORMATION.

4.1.- Embedded clusters and the Luminisity Function.

4.2.- NIR observations of embedded clusters.

4.3.- Bolometric Luyminosity Functions.

4.4.- Conclusions.

"LAST STAGES OF STELLAR EVOLUTION"

Prof. Dr. S.R. Pottasch
Kapteyn Laboratory. The Netherlands.

1.- THEORETICAL EVOLUTION.

1.1.- Review of the early evolution.

1.2.- Thermally pulsating AGB stars.

1.3.- Uncertainty in early evolution.

1.4.- Enrichment of helium, nitrogen and carbon.

1.5.- Core mass-luminosity relation.

1.6.- Post AGB evolution.

2.- OBSERVATIONS

2.1.- The cool giants.

2.2.- The Mira Variables.

2.2.1.- Light curves, periods, absolute magnitudes and mass loss.

2.2.2.- Spatial distribution, kinematics and local space density of Miras.

2.2.3.- Mass loss.

2.2.4.- Mass of Mira variables and pulsation theory.

2.3.- The OH/IR stars.

2.3.1.- OH maser emission.

2.3.2.- Observed OH emission.

2.3.3.- Distribution and kinematics of OH/IR maser sources.

2.3.4.- The birthrate of OH/IR stars.

3.- FROM AGB TO PLANETARY NEBULAE.

3.1.- The IRAS color-color diagram.

3.2.- The LRS spectra.

3.3.- Classes of objetcs suggested to be post AGB stars.

3.3.1.- Non-variable OH/IR stars.

3.3.2.- High latitude 'supergiants'.

3.3.3.- Young planetary nebulae.

3.3.4.- Objects with deep 9.7 µm absorption.

3.3.5.- R Cor Bor and RV Tau stars.

3.3.6.- Miscellaneous objects.

4.- PLANETARY NEBULAE.

4.1.- Spatial distribution and kinematics.

4.2.- Distances.

4.2.1.- Binary stars and clusters.

4.2.2.- 21 cm absorption line.

4.2.3.- Visual extinction.

4.2.4.- Stellar atmosphere analysis.

4.2.5.- Expansión distances.

4.3.- Central star temperatures.

4.3.1.- 'Zabstra' temperatures.

4.3.2.- 'Stoy' temperatures.

4.3.3.- Stellar atmosphere analysis.

4.3.4.- Temperatures from nebular models.

4.3.5.- Evaluation of the temperature determination.

4.4.- Luminosity of the central stars.

4.5.- Number and formation rate of planetary nebulae in the galaxy.

3.- TRANSITION TO THE WHITE DWARF.

 

"THE MILKY WAY GALAXY AND THE GALACTIC CENTRE"

Prof. Gerard Gilmore.
Institute of Astronomy. U.K.

1.- INTRODUCTION.

1.1.- What is there to be seen?

1.2.- Mass to Light Ratios.

1.3.- Galactic Structure: Why Bother?

2.- GALACTIC STRUCTURE: THE BUILDING BLOCKS.

2.1.- The Central Bulge: - r< 1kpc.

2.2.- The Main Bulge: - 1< r < 3 kpc.

2.3.- The Subdwarf Halo.

2.4.- The Thick Disk.

2.5.- The Thin Disk.

3.- WHAT IS THE GALACTIC BULGE?

3.1.- Surface Brightness Measurements.

3.2.- IRAS Source Results.

3.3.- Is the Bulge a Bar?

3.4.- Is the 'Bulge' Part of the 'Halo'?

4.- THE GALACTIC CENTRE.

4.1.- The Energy Balance.

4.2.- Star Formation in the Centre?

4.2.1.- Should One Expect Current Star Formation?

4.2.2.- Is there Current Star Formation?

4.3.- The Great Annihilator.

4.4.- Sgr A*.

4.4.1.- Why SgrA* cannot be massive.

4.4.2.- Why SgrA* can be massive.

5.- LOW MASS STARS AND ALL THAT.

5.1.- Brown Dwarfs.

5.2.- Mass Densities Near The Sun.

5.2.1.- Measurements of the Galactic Potential.

5.2.2.- Determination of the disk surface mass density.

5.2.3.- The local volume mass density.

6.- HOW MANY LOW MASS STARS ARE THERE?

6.1.- Modelling the Luminosity Function.

6.1.1.- Pre main-sequence evolution.

6.1.2.- Main-sequence stellar evolution.

6.1.3.- Chemical Abundances.

6.1.4.- Parallax Errors.

6.1.5.- Binary Stars.

6.1.6.- Galactic Structure.

6.2.- Conversion of Luminosity to Mass.

6.3.- Monte Carlo Modelling - An Example.

6.4.- Is it worth it?

7.- CONCLUSIONS.

 

"GALAXIES IN THE INFRARED"

Prof. Charles M. Telesco
NASA-Marshall Space Flight Center. Alabama. U.S.A.

1.- EXTRAGALACTIC INFRARED EMISSION: AN OVERVIEW.

2.- KEY INFRARED DIAGNOSTICS.

2.1.- Infrared Emission Lines from Gas.

2.2.- Emission from Dust.

2.3.- Emission from Stars.

3.- QUIESCENT GALAXIES.

4.- STARBURST GALAXIES.

4.1.- IR Observations of Starburst Galaxies.

4.1.1.- Energy Distributions.

4.1.2.- Spatial Distributions.

4.1.3.- Ionization Rates.

4.2.- Conditions in Starbursts.

4.2.1.- The Stellar Environment.

4.2.2.- Stellar Populations.

4.3.- Causes of Starbursts.

5.- ACTIVE GALACTIC NUCLEI AND QUASARS.

"COSMOLOGY"

Prof. R.D. Joseph.
Institute for Astronomy. University of Hawaii. Honolulu. U.S.A.

1.- INTRODUCTION.

2.- THE ISOTROPIC UNIVERSE.

2.1.- Introduction.

2.2.- The Cosmological Priciple.

2.3.- The Hubble Law.

2.4.- The Redshift.

2.5.- Newtonian Cosmology.

2.6.- Cosmological Models.

2.7.- The Hot "Big-Bang" Model.

2.8.- The Synthesis of Light Elements in the Primeval Fireball.

3.- OBSERVATIONAL CONSTRAINTS ON THE ISOTROPIC HOT BIG-BANG.

3.1.- 2.7K Cosmic Background Radiation.

3.2.- Hubble's Constant.

3.3.- Age of the universe.

3.4.- Density paramenters Omega o

3.5.- Light Element Abundances.

3.6.- Conclusions.

4.- GALAXY FORMATION.

4.1.- Introduction - The Problem.

4.2.- Growth of a fuctuation in an expanding universe.

4.3.- Jeans mass.

4.4.- Growth of fluctuations prior to decoupling.

4.5.- Post-recombination evolution.

4.6.- Scenarios for galaxy formation.

4.7.- Conclusions.

"G25.5+0.2, A NEW RING NEBULA AROUND A LUMINOUS BLUE STAR: CASE STUDY FOR THE IMPORTANCE OF IR OBSERVATIONS"

Prof. E.E. Becklin.
Department of Astronomy. University of California. U.S.A.

1.- ABSTRACT

2.- INTRODUCTION

3.- OBSERVATIONS.

3.1.- Near Infrared Imaging.

3.2.- Infrared Spectroscopy.

3.3.- Ten Micron Photometry.

3.4.- CO (3-2) Observations.

4.- RESULTS

4.1.- Distance.

4.2.- Reddening Due to Interstellar Dust.

4.3.- The Central Star.

4.4.- The Ionized Gas.

4.5.- Dust Emission From the Nebula.

5.- DISCUSSION.

5.1.- g25.5+0.2 is not a supernova remnant.

5.2.- Not a Planetary Nebula.

5.3.- Not an HII Region like Orion.

5.4.- A Ring Nebula Around a Massive Supergiant Star.

6.- CONCLUSIONS

"COSMIC GRAINS"

Prof. N.C. Wickramasinghe.
School of Mathematics. University of Wales College of Cardiff. U.K.

1. BASIC CONSTRAINTS AND STANDARD MODELS

1.1..- Introduction.

1.2.- Formation Theories.

1.3.- Extinction of Starlight.

1.4.- Interstellar Polarization.

1.5.- Diffuse Galactic Light.

1.6.- Ice Grain Model.

1.7.- Graphite Model and its inadequacies.

1.8.- Evidence of Silicates?

1.9.- The Three Component Grain Model.

2.- SPECTROSCOPIC IDENTIFICATIONS AND THE ORGANIC MODEL.

2.1.- Introduction

2.2.- Production of Interstellar Organics.

2.3.- Bacterial Grain Model.

2.4.- The 3.4 µm Band: Proof that Grains are Mainly Organic.

2.5.- The 8-40 µm Spectrum of the Trapezium Nebula.

2.6.- Clusters of Aromatic Molecules.

2.7.- Aromatic Molecules and the Diffuse Optical Bands.

2.8.- Overview and Conclusion.

"INFRARED INSTRUMENTATION"

Prof. Ian S. McLean.
University of California. Los Angeles. U.S.A.

1.- THE INFRARED WAVEBAND.

1.1.- Historical review: from Herschel to IRAS.

1.2.- Classical limits: near-, mid-, far-infrared.

1.3.- Atmospheric extinction and "windows".

1.4.- Background radiation sources.

1.4.1.- OH emission.

1.4.2.- Thermal (blackbody) emission.

1.5.- Detector technologies.

1.5.1.- Photon detectors.

1.5.2.- Thermal detectors.

1.5.3.- AC detection and "chopping".

1.5.4.- Cryogenic operation.

1.6.- The infrared "array" revolution.

2.- INFRARED ARRAYS - BASIC PRINCIPLES.

2.1.- IR sensitive materials.

2.2.- The "hybrid" structure; comparison with CCDs.

2.3.- Properties of IR arrays.

2.3.1.- Charge detection and storage.

2.3.2.- Dark current.

2.3.3.- Readout noise.

2.3.4.- Unusual effects.

2.4.- Calibration & Characterization of arrays.

2.4.1.- Flat field correction.

2.4.2.- Gain and the Variance versus Signal method.

2.5.- Calculating the Signal-to-Noise ratio.

2.5.1.- The "array equation"

2.5.2.- Background - limited (BLIP) case.

2.5.3.- Noise Equivalent Power (NEP)

3.- DESIGNING IR INSTRUMENTS.

3.1.- Systems design and constraints.

3.2.- Optics - basic principles.

3.3.- Vacuum-cryogenics.

3.4.- Electronics & data acquisition.

3.5.- Software and data reduction.

4.- REVIEW OF MODERN INSTRUMENTS

4.1.- Photometers and bolometers.

4.2.- Infrared Cameras.

4.3.- Cooled Grating Spectrometers.

4.4.- Polarimeters.

4.5.- Interferometers.

4.6.- Closing remarks.

"INFRARED ASTRONOMY WITH SATELLITES"

Prof. Thijs de Graauw.

SRON Laboratory for Space Research and Kapteyn Institute.
University of Groningen. The Netherlands.

1.- ABSTRACT.

2.- INTRODUCTION.

2.1.- Why Infrared Astronomy from Space?

2.2.- IR Astronomy from Air-, Balloon- and Rocketborne Platforms.

2.3.- IR Satellites.

3.- COMPLETED SATELLITE MISSIONS.

3.1.- IRAS.

3.1.1.- The IRAS satellite and mission.

3.1.2.- The IRAS Data base.

3.2.- Cosmic Background Explorer (COBE).

3.2.1.- The COBE satellite and mission.

3.2.2.- Preliminary Scientific results.

4.- FUTURE SATELLITE MISSIONS.

4.1.- The Infrared Space Observatory (ISO).

4.1.1.- Introduction.

4.1.2.- The ISO scientific Payload.

4.2.- The Infrared Telescope in Space (IRTS)

4.3.- The Space Infrared Telescope Facility (SIRTF).

4.4.- FIRST.

4.5.- Passively Cooled Orbiting Telescopes (POIROT's).

APPENDIX 1. IR SATELLITE TECHNOLOGY.

A.1.1.- Cryogenic considerations.

A.1.2.- Orbit considerations.

APPENDIX 2. IR SPACE INSTRUMENTATION.