XVII CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS

"3D SPECTROSCOPY "

Instituto de Astrofísica de Canarias
Puerto de la Cruz,Tenerife, Canary Islands (Spain)

November 21th - 2nd December, 2005

Programme

Introductory Review and Technical Approaches
Martin M. Roth, Astrophysikalisches Institut Potsdam, GERMANY

Observational procedures and Data reduction
James E. H. Turner, Gemini Observatory Southern Operations Centre, CHILE

Instrumentation
Matthew A. Bershady, The University of Wisconsin, USA

Data analysis
Pierre Ferruit, Centre de Recherche Astronomique de Lyon, FRANCE Lyon, FRANCE

Science motivation for IFS and "galactic" studies
Franck Eisenhauer, Max-Planck-Institut für Extraterrestrische Physik, GERMANY

"Extragalactic" studies and future IFS science
Luis Colina Robledo, Instituto de Estructura de la Materia, SPAIN

Tutorial I
Arlette Pecontal, Centre de Recherche Astronomique de Lyon, FRANCE
Begoña García-Lorenzo, Instituto de Astrofisica de Canarias, SPAIN

Tutorial II
Arlette Pecontal, Centre de Recherche Astronomique de Lyon, FRANCE
Sebastián Sánchez Sánchez, Centro Astronómico Hispano-Alemán, SPAIN

Introductory Review and Technical Approaches
Martin M. Roth, Astrophysikalisches Institut Potsdam, GERMAN

Introductory Review

- Objective
- Concept
- Classical Techniques
- Terminology
- IFS
- History

Technical Approaches

- micro-lenses
- fibers
- image slicers
- 3D detectors
- Trade-off: figure of merit

Observational procedures and Data reduction
James E. H. Turner, Gemini Observatory Southern Operations Centre, CHILE

- sampling theory
- Data cube vr. spectral approach
- Standard procedures

* micro-lenses
* fibers
* slicers

- Data format
- Error propagation
- Observing procedures: recipes

Instrumentation
Matthew A. Bershady, The University of Wisconsin, USA

1. Current instruments

a. Fundamental challenges and considerations for sampling the data cube

i. The detector limit-I: three into two dimensions

- spatial vs spectral sampling
- coverage vs resolution (spatial and spectral): grasp, etendue, R

ii. The detector limit-II: read-noise

- detector vs photon limited
- background-limited: constraints on the A-Omega-R sampling unit

iii. Integral vs sparse sampling in spatial and spectral domains

b. Approaches and examples of available instruments

i. Grating-dispersed spectrographs

- basic spectrograph design
- dispersive elements

* reflection gratings: SR and VPH
* transmission gratings, SR-grisms, and VPH-grisms
* implications for resolution, band-pass, efficiency, and instrument design

+ transmission vs reflection
+ anamorphic demagnification

- coupling formats and methods

* reformatted longslit or multi-longslit

+ fiber
+ fiber+lenslet
+ image slicer

* lenslet arrays: pupil-imaging spectroscopy
* filter-multiplexed slit-lets
* multi-object configurations

- implications of coupling methods

* fibers: FRD and scrambling

+ information loss
+ spectrograph design
+ focal plane remapping issues: problems and advantages

* fibers + lenslets

+ filling factor
+ far-field vs near-field effects
+ where to control systematics: seeing-limited or abberation limited?

* lenslets: formatting, efficiency, and scattered light
* integral vs formated

- summary of considerations:

* information packing

+ format-driven trades

* coverage vs purity: scattered light and cross-talk
* sky subtraction

+ issues and root causes of problems: dispersion, abberations, sampling, stability, non-locality
+ solutions / algorithms
+ example of telescope-time-efficient algorithm

ii. Interferometry-I: Fabry-Perot imaging

- the bull's eye: implications for design and use
- sky stability: calibration design

iii. Interferometry-II: Spatial-heterodyne spectroscopy

- low-cost, diffraction-limited high-resolution capability
- multi-plex disadvantage: implications for design and use

c. Existing instruments, sorted by parameter sampling

spatial vs spectral / coverage vs resolution

d. Summary of sampled parameter space

e. Example of data and science product

i. Extra-galactic science at high-spectral resolution and low surface-brightness

- science drivers: ISM, kinematics, and mass distributions in disk galaxies
- counter-point to "future instrument" design
- precursor to "future science" at high redshift
- specific examples of instruments and science product

2. Future instruments

a. Ground-based instruments on 30-100m telescopes:

i. AO-driven designs

- different kinds of AO
- instrument size at the diffraction limit
- unique parameter space: the photon limit at high resolution

ii. Specific examples of TMT and ELT instrumentation

- WFOS - seeing-limited
- IRIS - NIRFAOS, diffraction limited
- IRMOS - MOAO, multi-object

b. Space-based instruments: JWST

i. backgrounds
ii. planned instruments

c. Unexplored options: some examples

i. notch gratings on existing grating-dispersed 3D spectrographs
ii. FP + fiber or lenslet
iii. SHS + fiber or lenselet array
iv . large-grasp IFUs at high spectral resolution

Data analysis
Pierre Ferruit, Centre de Recherche Astronomique de Lyon, FRANCE

- constructing maps
- combination (dithering, mosaicing)
- procedures

* spectral (line) fitting
* spatial fitting
* velocity field
* velocity dispersion maps
* reddening maps
* continuum maps
* source detection algorithm

Science motivation for IFS and "galactic" studies
Frank Eisenhauer, Max-Planck-Institut für Extraterrestrische Physik, GERMANY

Lecture 1: Science Motivation for Integral Field Spectroscopy

- Structure of spatially and spectrally complex object
- Dynamics of systems without or unknown symmetry
- High-angular-resolution and faint-object spectroscopy

Lecture 2: The Galactic Center Black Hole and the Paradox of Faintness

- The dark mass concentration
- A geometric determination of the distance
- The infrared emission from the Black Hole

Lecture 3: The Galactic Center Stellar Population and the Paradox of Youth

- A small starburst a few Megayears ago
- Two counter-rotating discs in the central parsec
- A cluster of unusual young stars in the central light-month

Lecture 4: Starformation and Stellar Evolution

- Pre-main-sequence stars
- Jets and Herbig-Haro objects
- Late stages of stellar evolution

Lecture 5: The Solar System

- Surface and atmosphere of planets and moons

"Extragalactic" studies and future IFS science
Luis Colina Robledo, Instituto de Estructura de la Materia, SPAIN

Science 3: Past and Present 'extra-galactic' studies

- Elliptical and spiral galaxies. Stellar populations and nuclear kinematics
- Active Galactic Nuclei. Kinematics and ionization structure of the extended emission line regions
- Interacting/merging galaxies. Starbursts in luminous and Ultraluminous Infrared Galaxies
- Gravitational lens systems. Dust properties and extinction curves at high-z

Science 4: Future IFS science: science case for future instrument

- Panoramic integral field spectroscopy. Galaxy disks and dark-matter halos
- Multi-object integral field spectroscopy. Formation and evolution of galaxies
- Mid-IR integral field spectroscopy. From protoplanetary disks to high-z galaxies

Tutorial I - II
Arlette Pecontal, Centre de Recherche Astronomique de Lyon, FRANCE

Begoña García-Lorenzo, Instituto de Astrofisica de Canarias, SPAIN

Sebastián Sánchez Sánchez, Centro Astronómico Hispano-Alemán, SPAIN

- Installation
- Explanations
- Case 1 (related to science and data analysis cases)
- Case 2