Severo Ochoa Programme

Research News

  • Photometric magnetic activity index, Sph, as a function of the Rossby for the Kepler stars showing the comparison between an older relation to compute the Rossby number (left panel, Noyes 1984) and the Rossby number from this work (right panel).

    In a star like the Sun, surface magnetic activity results from the interaction between rotation, convection, and magnetic field. One of the key parameters to study the magnetic activity of stars is the Rossby number, which is the ratio between the surface rotation period of the star and the convective turnover time. The convective turnover time measures the time that takes a bubble of plasma to go from the base of the convective zone in a star like the Sun to the surface, similarly to a bubble reaching the surface in a pan with boiling water heated by the bottom. While the surface rotation

    Advertised on
  • Image taken by the Hubble Space Telescope of the Einstein ring GAL-CLUS-022058s, located in the constellation of Fornax. Credit: ESA/Hubble & NASA, S. Jha; Acknowledgment: L. Shatz

    In December 2020 a team from the European Space Agency (ESA) published an image taken by the Hubble Space Telescope (HST) of GAL-CLUS-022058s, the biggest and one of the most complete Einstein rings discovered, situated towards the southern hemisphere constellation of Fornax. Since then, those observations have been used to develop a model of gravitational lenses which has enabled the study of the physical properties of the amplified galaxies.

    Advertised on
  • View of HH204, a Herbig-Haro object in the Orion Nebula. The left panel shows the Orion Nebula observed with the Hubble Space Telescope, picking out the area around HH204. In the right panel, we can see in detail the structure of HH204 and of its apparent companion, HH203. In this panel, the images by the Hubble Space Telescope taken during 20 years and artificially highlighted with different colours show the advance of the jets of gas through the Orion Nebula. Credit: Gabriel Pérez Díaz, SMM (IAC).

    An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) has uncovered, with an new high degree of detail, the physical and chemical effects of the impact of a protostellar jet in the interior of the Orion Nebula. The study was made using observations with the Very Large Telescope (VLT) and 20 years of images with the Hubble Space Telescope (HST). The observations show evidence of compression and heating produced by the shock front, and the destruction of dust grains, which cause a dramatic increase in the gas phase abundance of the atoms of iron, nickel

    Advertised on
  • Scatter plot of oscillation amplitude and damping ratio values for 101 loop oscillation cases. The symbols and their colors indicate the levels of evidence obtained for the nonlinear (NL) and the linear resonant absorption (RA) models.

    The solar coronal heating problem originated almost 80 years ago and remains unsolved. A plausible explanation lies in mechanisms based on magnetic wave energy dissipation. Currently, several linear and nonlinear wave damping models have been proposed. The advent of space instrumentation has led to the creation of catalogues containing the properties of a large number of loop oscillation events. When the damping ratio of the oscillations is plotted against their oscillation amplitude, the data are scattered forming a cloud with a triangular shape. Larger amplitudes correspond in general to

    Advertised on
  • Artist’s impression of the L 98-59 planetary system. Credit: ESO/M. Kornmesser

    An international team of astronomers, in which the Instituto de Astrofísica de Canarias (IAC) has participated, has found an exoplanetary system formed by several planets similar to the inner planets of the Solar System, orbiting around the nearby star L 98-59. Among them there is a planet with half the mass of Venus -the lowest mass exoplanet ever measured using the radial velocity technique-, an oceanic planet, and a planet possibly within the habitable zone.

    Advertised on
  • Artist’s impression of the Nu2 Lupi planetary system. Credit: ESA.

    The exoplanet satellite hunter CHEOPS of the European Space Agency (ESA), in which the Instituto de Astrofísica de Canarias (IAC) is participating along with other European institutions, has unexpectedly detected a third planet passing in front of its star while it was exploring two previously known planets around the same star. This transit, according to researchers, will reveal exciting details about a strange planet “without a known equivalent”.

    Advertised on