Magnetic imaging of the outer solar atmosphere (MImOSA)

H. Peter,; E. Alsina Ballester ; V. Andretta,; F. Auchère,; L. Belluzzi,; A. Bemporad,; D. Berghmans,; E. Buchlin,; A. Calcines,; L.P. Chitta,; K. Dalmasse,; T. del Pino Alemán ; A. Feller,; C. Froment,; R. Harrison,; M. Janvier,; S. Matthews,; S. Parenti,; D. Przybylski,; S.K. Solanki,; J. Štěpán,; L. Teriaca; J. Trujillo Bueno
Referencia bibliográfica

Experimental Astronomy

Fecha de publicación:
12
2022
Número de autores
23
Número de autores del IAC
3
Número de citas
2
Número de citas referidas
2
Descripción
The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric layers hampers our progress in understanding solar magnetic activity. Overcoming this limitation would allow us to address four paramount long-standing questions: (1) How does the magnetic field couple the different layers of the atmosphere, and how does it transport energy? (2) How does the magnetic field structure, drive and interact with the plasma in the chromosphere and upper atmosphere? (3) How does the magnetic field destabilise the outer solar atmosphere and thus affect the interplanetary environment? (4) How do magnetic processes accelerate particles to high energies? New ground-breaking observations are needed to address these science questions. We suggest a suite of three instruments that far exceed current capabilities in terms of spatial resolution, light-gathering power, and polarimetric performance: (a) A large-aperture UV-to-IR telescope of the 1-3 m class aimed mainly to measure the magnetic field in the chromosphere by combining high spatial resolution and high sensitivity. (b) An extreme-UV-to-IR coronagraph that is designed to measure the large-scale magnetic field in the corona with an aperture of about 40 cm. (c) An extreme-UV imaging polarimeter based on a 30 cm telescope that combines high throughput in the extreme UV with polarimetry to connect the magnetic measurements of the other two instruments. This mission to measure the magnetic field will unlock the driver of the dynamics in the outer solar atmosphere and thereby greatly advance our understanding of the Sun and the heliosphere.
Proyectos relacionados
Project Image
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica

Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz

Tanausú del
Pino Alemán