El experimento espacial CLASP2 cartografía, por primera vez, el campo magnético solar desde la fotosfera hasta la base de la corona

Visualización artística del campo magnético solar en la región activa observada por CLASP2. Crédito: Gabriel Pérez Díaz, SMM (IAC)
Fecha de publicación

Los telescopios espaciales obtienen cada día imágenes espectaculares de la actividad solar. Sin embargo, sus instrumentos son ciegos al responsable de tal actividad: el campo magnético en las capas externas de la atmósfera solar, donde tienen lugar los fenómenos explosivos que en ocasiones afectan a la Tierra. Las extraordinarias observaciones de la polarización de la luz ultravioleta del Sol logradas por la misión CLASP2 han permitido elaborar un mapa del campo magnético a través de toda la atmósfera solar, desde la fotosfera hasta la base de la extremadamente caliente corona. Esta investigación, publicada hoy en la revista Science Advances, ha sido realizada por el equipo internacional responsable de tal experimento suborbital, el cual incluye a varios científicos del grupo POLMAG del Instituto de Astrofísica de Canarias (IAC).

Fig 1
Figura 1: (Pulsa sobre la imagen para verla completa) La imagen en color rojo, obtenida por el telescopio SDO de la NASA, muestra la región activa del disco solar observada simultáneamente por CLASP2 e Hinode. Las líneas verdes a la izquierda indican la posición de la rendija del espectropolarímetro de CLASP2. En cada punto de esta rendija CLASP2 midió la variación con la longitud de onda de la intensidad (panel superior derecho) y de la polarización circular (panel inferior derecho) en líneas cromosféricas del espectro ultravioleta solar. De forma simultánea, el telescopio espacial Hinode midió la polarización circular en líneas fotosféricas del rango visible del espectro. Estas señales de polarización circular son producidas por el campo magnético presente a distintas alturas en la atmósfera solar y, a partir de ellas, los investigadores han logrado determinar cómo varía el campo magnético desde la fotosfera hasta la base de la corona. (Crédito: NAOJ, IAC, NASA/MSFC, IAS).

La cromosfera es una región muy importante de la atmósfera solar que se extiende unos miles de kilómetros entre la relativamente delgada y fría fotosfera (con temperaturas de algunos miles de grados) y la extensa y extremadamente caliente corona (con temperaturas superiores al millón de grados). Aunque la temperatura de la cromosfera es cien veces menor que la de la corona, la cromosfera es mucho más densa y necesita muchísima más energía para sostenerse. Además, la energía mecánica necesaria para calentar la corona tiene que atravesar la cromosfera, lo que la convierte en una región interfaz crucial para solucionar muchos de los problemas clave en la física solar y estelar. Uno de los retos científicos actuales es entender cómo se produce la violenta actividad de la atmósfera solar, que en ocasiones perturba la magnetosfera terrestre con serias consecuencias para nuestro presente mundo tecnológico.        

Es imposible entender la atmósfera solar si no logramos determinar los campos magnéticos de la cromosfera, especialmente en sus capas más externas, donde la temperatura del plasma es del orden de diez mil grados y las fuerzas magnéticas dominan la estructura y dinámica del plasma”, asegura Javier Trujillo Bueno, Profesor del CSIC en el IAC y científico responsable del grupo POLMAG del IAC (véase http://research.iac.es/proyecto/polmag/). Las investigaciones teóricas realizadas por este grupo, financiado por una “Advanced Grant” del Consejo Europeo de Investigación, indicaron que tal objetivo puede alcanzarse si se observa la polarización que varios mecanismos físicos producen en la radiación ultravioleta emitida por los átomos de hidrógeno neutro y del magnesio ionizado en la cromosfera solar.

Dado que la atmósfera de la Tierra absorbe la radiación ultravioleta del Sol, hay que ir a observarla por encima de los 100 kilómetros de altura. Con este objetivo se creó un consorcio internacional liderado por el Marshall Space Flight Center de la NASA (NASA/MSFC), el Observatorio Astronómico Nacional japonés (NAOJ), el Instituto de Astrofísica Espacial francés (IAS) y el Instituto de Astrofísica de Canarias (IAC). Este equipo diseñó una serie de experimentos espaciales que fueron aprobados en llamamientos competitivos de la NASA en el marco de su programa para investigaciones con cohetes sonda. El acrónimo de tales experimentos espaciales es CLASP, el “Chromospheric Lyman-Alpha Spectro-Polarimeter” (CLASP1, lanzado el 3 de septiembre de 2015) y el “Chromospheric LAyer Spectro-Polarimeter” (CLASP2, lanzado el 11 de abril de 2019). Ambos experimentos suborbitales han tenido un gran éxito (véase la página web del proyecto POLMAG) y la NASA así lo ha reconocido al otorgar su “Group Achievement Honor Award”  (Premio de Honor a los Logros del Grupo) al equipo internacional.  

El artículo científico que acaba de publicar la prestigiosa revista “Science Advances” está basado en una pequeña parte de los datos sin precedentes conseguidos por CLASP2. En particular, el equipo ha analizado la intensidad y polarización circular de la radiación ultravioleta emitida por el plasma de una región activa de la atmósfera solar, en el rango espectral de las líneas h y k del Mg II (magnesio ionizado), alrededor de 2800 Å (véase la figura 1). En esta región espectral se encuentran también dos líneas espectrales producidas por los átomos del Mn I (manganeso neutro).

La polarización circular observada por CLASP2 se debe a un fenómeno físico conocido como efecto Zeeman, mediante el cual la radiación emitida por los átomos está polarizada cuando estos están en presencia de un campo magnético. “Las señales de polarización circular en las líneas del magnesio (Mg II) son sensibles al campo magnético en las regiones media y externa de la cromosfera solar, mientras que la polarización circular en las líneas del manganeso (Mn I) responde a campos magnéticos en la región más profunda de la cromosfera”, explica Tanausú del Pino Alemán, uno de los científicos del grupo POLMAG y del equipo internacional.  

Mientras CLASP2 realizaba sus observaciones, el telescopio espacial Hinode apuntaba simultáneamente a la misma región activa del disco solar. “Esto permitió obtener información sobre el campo magnético en la fotosfera a partir de la polarización observada en líneas espectrales del hierro neutro (Fe I), que se encuentran en el rango visible del espectro”, comenta Andrés Asensio Ramos, otro de los investigadores del IAC que ha participado en el proyecto. El equipo también logró observaciones simultáneas con el telescopio espacial IRIS, midiendo la intensidad de la radiación ultravioleta con mayor resolución espacial (IRIS no fue diseñado para medir la polarización).

Los autores de esta investigación internacional, coordinada por la Dra. Ryohko Ishikawa (NAOJ) y el Dr. Javier Trujillo Bueno (IAC), han logrado cartografiar por primera vez el campo magnético a través de toda la atmósfera de la región activa observada por CLASP2, desde la fotosfera hasta la base de la corona (véase la figura 2). “Este cartografiado del campo magnético a distintas alturas en la atmósfera solar es de gran interés científico, pues ayudará a descifrar el acoplamiento magnético entre las distintas regiones de la atmósfera solar”, comenta Ernest Alsina Ballester, investigador del equipo internacional que acaba de incorporarse al IAC tras su primer postdoctorado en Suiza.

Los resultados obtenidos confirman y demuestran que, en estas regiones de la atmósfera solar, las líneas de fuerza del campo magnético se expanden e inundan toda la cromosfera antes de llegar a la base de la corona. Otro resultado importante de esta investigación es que la fuerza del campo magnético en las capas más externas de la cromosfera está fuertemente correlacionada con la intensidad de la radiación en el centro de las líneas espectrales del magnesio y con la presión de electrones en esas mismas capas, lo que revela el origen magnético del calentamiento de las regiones externas de la atmósfera solar.

Los experimentos espaciales CLASP1 y CLASP2 suponen un hito en la Astrofísica, siendo la primera vez que se logra observar las relativamente débiles señales de polarización producidas por varios mecanismos físicos en líneas del espectro ultravioleta del Sol. Estas observaciones han confirmado de forma espectacular las predicciones teóricas, validando la teoría cuántica sobre la generación y transferencia de radiación polarizada que estos científicos aplican en sus estudios sobre el campo magnético de la cromosfera solar.

El equipo internacional acaba de recibir la buena noticia de que la NASA ha seleccionado su reciente propuesta para realizar un nuevo experimento espacial durante el próximo año, lo que les permitirá cartografiar el campo magnético en regiones más extensas del disco solar. “Obviamente, observaciones sistemáticas de la intensidad y polarización de la radiación ultravioleta del Sol requieren un telescopio espacial equipado con instrumentos como los de CLASP, pues los pocos minutos de observación de un vuelo suborbital no son suficientes”, comenta Javier Trujillo Bueno. El equipo está convencido de que, gracias a lo demostrado con CLASP1 y CLASP2, tales telescopios espaciales se harán pronto realidad y que la interpretación física de sus observaciones espectro-polarimétricas permitirá entender mejor la actividad magnética en las regiones externas de las atmósferas del Sol y de otras estrellas.

Fig 2
FIGURA 2: La componente longitudinal del campo magnético (en gauss) en cada punto a lo largo de la dirección espacial indicada por la recta verde dibujada en los paneles izquierdos de la figura 1. Los campos magnéticos más intensos y más débiles se encuentran en la fotosfera (curva verde), donde hay regiones fuertemente magnetizadas (hasta 1250 gauss) separadas por otras débilmente magnetizadas (10 gauss). Esas enormes variaciones en la intensidad del campo magnético al desplazarnos horizontalmente en la fotosfera (curva verde) son menores cuando llegamos a las alturas de la baja cromosfera (símbolos azules), y aun menores en la capas intermedias (símbolos negros) y externas (símbolos rojos) de la cromosfera. Estos resultados confirman y demuestran que, en este tipo de regiones activas de la atmósfera solar, la intensidad del campo magnético decrece con la altura y que las líneas de fuerza del campo magnético se expanden e inundan toda la cromosfera antes de llegar a la base de la corona. (Crédito: NAOJ, IAC, NASA/MSFC, IAS).

Artículo: Mapping Solar Magnetic Fields from the Photosphere to the Base of the Corona

Autores: Ryohko Ishikawa, Javier Trujillo Bueno, Tanausú del Pino Alemán, Takenori J. Okamoto, David E. McKenzie, Frédéric Auchère, Ryouhei Kano, Donguk Song, Masaki Yoshida, Laurel A. Rachmeler, Ken Kobayashi, Hirohisa Hara, Masahito Kubo, Noriyuki Narukage, Taro Sakao, Toshifumi Shimizu, Yoshinori Suematsu, Christian Bethge, Bart De Pontieu, Alberto Sainz Dalda, Genevieve D. Vigil, Amy Winebarger, Ernest Alsina Ballester, Luca Belluzzi, Jiri Stepan, Andrés Asensio Ramos, Mats Carlsson, Jorrit Leenaarts

Science Advances, 19 February 2021: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.abe8406

Investigadores Principales del experimento espacial CLASP2:

David McKenzie (NASA/MSFC, EE. UU.)

Ryohko Ishikawa (NAOJ, Japón)

Frédéric Auchère (IAS, Francia)

Javier Trujillo Bueno (IAC, España)

Científicos del IAC que participan en CLASP2:

Ernest Alsina Ballester (IAC)

Andrés Asensio Ramos (IAC)

Tanausú del Pino Alemán (IAC)

Javier Trujillo Bueno (IAC)

Contacto en el IAC:

Javier Trujillo Bueno (jtb [at] iac.es)

CLASP2 es un proyecto internacional liderado por el Marshall Space Flight Center de la NASA (USA), el National Astronomical Observatory of Japan (Tokyo, Japón), el Instituto de Astrofísica de Canarias (IAC, Tenerife, Spain) y el Institut d'Astrophysique Spatiale (IAS, France). Otras instituciones que participan en el proyecto son el Istituto Ricerche Solari Locarno (Suiza), el Astronomical Institute de la Academia de Ciencias de la República Checa, el Lockheed Martin Solar & Astrophysics Laboratory (EE UU), la Universidad de Estocolmo (Suecia) y el Rosseland Center for Solar Physics (Noruega).

* La participación del IAC en CLASP2 recibe financiación del Consejo Europeo de Investigación (ERC) en el marco del Programa de Investigación e Innovación Horizon 2020 de la Unión Europea (Acuerdo de “Advanced Grant” n° 742265).

Notas de prensa relacionadas:

NAOJ (link a la nota de prensa)

NASA (link a la nota de prensa)

Vídeo del experimento espacial CLASP2:

https://youtu.be/4EvQ_Mqqrtg

Crédito del vídeo: NAOJ, IAC, NASA/MSFC, IAS 

Proyectos relacionados
POLMAG group
POLMAG - Diagnóstico de la radiación polarizada para explorar el magnetismo de la atmósfera solar externa

POLMAG apunta a un verdadero avance en el desarrollo y la aplicación de métodos de diagnóstico de radiación polarizada para explorar los campos magnéticos de la cromosfera, la región de transición y la corona del Sol.

Javier
Trujillo Bueno
Noticias relacionadas
Portada del vídeo del proyecto

El IAC presenta un vídeo divulgativo del proyecto “Radiación Polarizada para Explorar el Magnetismo de la Atmósfera Solar” (POLMAG). En este vídeo, varios investigadores del grupo explican los aspectos fundamentales de este proyecto de investigación, creado en enero de 2018 en el marco de la “Advanced Grant” concedida por el Consejo Europeo de Investigación (ERC) a Javier Trujillo Bueno (Profesor de Investigación del CSIC y Científico Senior del IAC). POLMAG aspira a lograr novedosos avances en el desarrollo y aplicación de métodos de diagnóstico de la radiación polarizada para investigar

Fecha de publicación
Figure 1: Visualization of the temperature structure across a vertical slice through a three-dimensional (3D) model of the solar atmosphere, taken from a state-of-the-art magneto-hydrodynamic simulation of the chromosphere-corona transition region (see Carlsson et al. 2016; A&A, 585, A4). The solid curve shows the heights (Z) in this model where the line-center photons of the hydrogen Lyman-α line observed by CLASP stem from (note that it practically delineates the model’s transition region). The investigat

El experimento suborbital CLASP, motivado por investigaciones teóricas desarrolladas en el Instituto de Astrofísica de Canarias (IAC), ha proporcionado observaciones sin precedentes de la polarización de la radiación ultravioleta del Sol. La modelización teórica de estas observaciones pioneras ha revelado que la enigmática región de transición entre la cromosfera y la corona es extremadamente corrugada, con una geometría mucho más compleja que la de los modelos actuales de la atmósfera solar.

Fecha de publicación