The James Webb telescope produces an unparalleled view of the ghostly light in galaxy clusters

Image of the James Webb Telescope's "First Deep Field" that has made it possible to study the intra-cluster light of the SMACS-J0723.3-7327 cluster. Credit: NASA, ESA, CSA, STScI
Advertised on

A recent study, entirely done by researchers at the Instituto de Astrofísica de Canarias (IAC) has produced the most complete analysis to date of the intracluster light, the diffuse and faint light emitted by stars in galaxy clusters which are not gravitationally bound to any galaxy. This result was based on data obtained by the new James Webb Space Telescope (JWST). The research gives new clues about the formation processes of galaxy clusters, and the properties of dark matter. The article was published in the specialized journal The Astrophysical Journal Letters.

In clusters of galaxies there is a fraction of stars which wander off into intergalactic space because they are pulled out by huge tidal forces generated between the galaxies in the cluster. The light emitted by these stars is called the intracluster light (ICL) and is extremely faint. Its brightness is less than 1% of the brightness of the darkest sky we can observe from Earth. This is one reason why images taken from space are very valueable for analyzing it.

Intracluster light
Image of the intracluster light of the cluster SMACS-J0723.3-7327 obtained with the NIRCAM camera on board of JWST. The data have been processed by the IAC team to improve the detection of the faint light between the galaxies (black and white).Credit: NASA, ESA, CSA, STScI

Infrared wavelengths allow us to explore clusters of galaxies in a different way than with visible light. Thanks to its efficiency at infrared wavelengths and the sharpness of the images of the JWST, IAC researchers Mireia Montes and Ignacio Trujillo have been able to explore the intracluster light from SMACS-J0723.3-7327 with an unprecedented level of detail. In fact the images from the JWST of the centre of this cluster are twice as deep as the previous images obtained by the Hubble Space Telescope. “In this study we show the great potential of JWST for observing an object which is so faint” explains Mireia Montes, the first author of the article. “This will let us study galaxy clusters which are much further away, and in much greater detail” she adds.

In order to analyze this extremely faint “ghostly” light, as well as needing the observational capability of the new space telescoope, the researchers have developed new analysis techniques, which improve on existing methods. “In this work we needed to do some extra processing to the JWST images to be able to study the intracluster light, as it is a faint and extended structure. That was key to avoid biases in our measurements“ says Mireia.

Thanks to the data obtained the researchers have been able to demonstrate the potential of the intracluster light for studying and understanding the processes which go into the formation of structures as massive as clusters of galaxies. “Analyzing this diffuse light we find that the inner parts of the cluster are being formed by a merger of massive galaxies, while the outer parts are due to the accretion of galaxies similar to our Milky Way” she notes.

But these observations not only offer clues about the formation of galaxy clusters, but also about the properties of a mysterious component of our universe: dark matter. The stars which emit the intracluster light follow the gravitational field of the cluster, which makes this light an excellent tracer of the distribution of the dark matter in these structures.“The JWST will let us characterize the distribution of the dark matter in these enormous structures with unprecedented precision, and throw light on its basic nature” concludes Ignacio Trujillo, the second author of the article.

Article: Montes, Mireia; Trujillo, Ignacio: “A new era of intracluster light studies with JWST”, The Astrophysical Journal Letters, 2022. DOI: 10.3847/2041-8213/ac98c5 

Contact at the IAC:

Mireia Montes, mireia.montes [at] iac.es (mireia[dot]montes[at]iac[dot]es)
Ignacio Trujillo, itc [at] iac.es (itc[at]iac[dot]es)

Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu
Related news