The GIST pipeline: A multi-purpose tool for the analysis and visualisation of (integral-field) spectroscopic data

Bittner, A.; Falcón-Barroso, J.; Nedelchev, B.; Dorta, A.; Gadotti, D. A.; Sarzi, M.; Molaeinezhad, A.; Iodice, E.; Rosado-Belza, D.; de Lorenzo-Cáceres, A.; Fragkoudi, F.; Galán-de Anta, P. M.; Husemann, B.; Méndez-Abreu, J.; Neumann, J.; Pinna, F.; Querejeta, M.; Sánchez-Blázquez, P.; Seidel, M. K.
Bibliographical reference

Astronomy and Astrophysics, Volume 628, id.A117, 14 pp.

Advertised on:
8
2019
Number of authors
19
IAC number of authors
7
Citations
65
Refereed citations
57
Description
We present a convenient, all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data. The Galaxy IFU Spectroscopy Tool (GIST) is entirely written in Python 3 and conducts all the steps from the preparation of input data to the scientific analysis and to the production of publication-quality plots. In its basic set-up, it extracts stellar kinematics, performs an emission-line analysis, and derives stellar population properties from full spectral fitting and via the measurement of absorption line-strength indices by exploiting the well-known pPXF and GandALF routines, where the latter has now been implemented in Python. The pipeline is not specific to any instrument or analysis technique and provides easy means of modification and further development, thanks to its modular code architecture. An elaborate, Python-native parallelisation is implemented and tested on various machines. The software further features a dedicated visualisation routine with a sophisticated graphical user interface. This allows an easy, fully interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models. The pipeline has been successfully applied to both low- and high-redshift data from MUSE, PPAK (CALIFA), and SINFONI, and to simulated data for HARMONI and WEAVE and is currently being used by the TIMER, Fornax3D, and PHANGS collaborations. We demonstrate its capabilities by applying it to MUSE TIMER observations of NGC 1433. http://ascl.net/1907.025, http://https://abittner.gitlab.io/thegistpipeline
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro
Project Image
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra