Silicon in the dayside atmospheres of two ultra-hot Jupiters

Cont, D.; Yan, F.; Reiners, A.; Nortmann, L.; Molaverdikhani, K.; Pallé, E.; Stangret, M.; Henning, Th.; Ribas, I.; Quirrenbach, A.; Caballero, J. A.; Zapatero Osorio, M. R.; Amado, P. J.; Aceituno, J.; Casasayas-Barris, N.; Czesla, S.; Kaminski, A.; López-Puertas, M.; Montes, D.; Morales, J. C.; Morello, G.; Nagel, E.; Sánchez-López, A.; Sedaghati, E.; Zechmeister, M.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
1
2022
Number of authors
25
IAC number of authors
3
Citations
21
Refereed citations
18
Description
Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b/MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8σ and 5.4σ, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
Related projects
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago