Ministerio de Economía y Competitividad Gobierno de Canarias Universidad de La Laguna CSIC Centro de Excelencia Severo Ochoa

Results Gallery

Select a year: 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 |

· More scientific highlights from this year.

Evidence for rotational motions in the feet of a quiescent solar prominence.

Author/s: D. Orozco Suárez, A. Asensio Ramos, and J. Trujillo Bueno

Reference: 2012, ApJ, 761, L25 | Link

Doppler shifts resulting from a two-components Gaussian fit of the He I 10830 triplet intensity profiles. The velocity is saturated at ± 6 km/s. Vertical lines delimit the prominence feet.
Doppler shifts resulting from a two-components Gaussian fit of the He I 10830 triplet intensity profiles. The velocity is saturated at ± 6 km/s. Vertical lines delimit the prominence feet.

We present observational evidence of apparent plasma rotational motions in the feet of a solar prominence. Our study is based on spectroscopic observations taken in the \ion{He}{1}~1083.0~nm multiplet with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope. We recorded a time sequence of spectra with 34 s cadence placing the slit of the spectrograph almost parallel to the solar limb and crossing two feet of an intermediate size, quiescent {\it hedgerow} prominence. The data show opposite Doppler shifts, $\pm$~6\kms, at the edges of the prominence feet. We argue that these shifts may be interpreted as prominence plasma rotating counterclockwise around the vertical axis to the solar surface as viewed from above. The evolution of the prominence seen in EUV images taken with the {\it Solar Dynamic Observatory} provided us clues to interpret the results as swirling motions. Moreover, time-distance images taken far from the central wavelength show plasma structures moving parallel to the solar limb with velocities of about $10-15$\kms. Finally, the shapes of the observed intensity profiles suggest the presence of, at least, two components at some locations at the edges of the prominence feet. One of them is typically Doppler shifted (up to $\sim$~20\kms) with respect to the other, thus suggesting the existence of supersonic counter-streaming flows along the line-of-sight.

We use our own cookies and cookies from a third party to gather statistical information to improve our services and our website. If you continue with the navigation, you are accepting the installation and use of these cookies. You can change the configuration of your browser not to accept the installation or you can obtain more information in our Cookie Policy.

OK