Atmospheric Dynamics in Mira Stars: A Spectropolarimetric Insight

Authors
Dr.
Nicolas Fabas
Date and time
9 Apr 2014 - 12:30 Europe/London
Address

Aula

Talk language
English
Slides language
English
Serie number
1
Description

To study the extended atmosphere of evolved stars such as Mira-type variables, spectropolarimetry is an innovative tool. For many kinds of stars, it has been used to measure global magnetic fields through circular polarization and the Zeeman effect. However, linear polarization has seldom been used in the past years even though phenomena such as scattering and the Hanle effect can definitely be studied as well, as it is done in solar physics. In this presentation, I am going to describe original results coming from a spectropolarimetric survey of Mira stars with NARVAL@TBL. Such results concern spectral lines like the Balmer lines of hydrogen and calcium lines. More specifically, I will focus on linear polarization and link this polarization to the propagation of the hypersonic radiative shock wave which is typical of Miras' atmospheres. In general, these environements are very dynamical and scattering in an aspherical atmosphere and velocity gradients can induce a strong linear polarization, likely to be further affected by weak magnetic fields. This analysis is very inspired of what is already done with solar spectra. In addition to that, I am going to present exclusive results about the first detection of a surface magnetic field in a Mira star and explain how the shock wave can impact this field. This work is likely to lead to collaborations with other disciplines such as interferometry (geometry of the scattering environement and characterization of the shock) and radio-astronomy (study of the polarization of masers).