The planetary nebula (PN) stage is the ultimate fate of stars with mass 1 to 8 solar masses (M⊙). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as it expands during the Asymptotic Giant Branch (AGB) phase. The excess material ends up forming a common-envelope (CE) surrounding both stars. Drag forces would then result in the envelope being ejected into a bipolar PN whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and evolve towards the white dwarf (WD) stage are called double-degenerates. Here we report that Henize 2–428 has a double-degenerate core with a combined mass unambiguously above the Chandrasekhar limit of 1.4 M⊙. According to its short orbital period (4.2 hours) and total mass (1.76 M⊙), the system should merge in 700 million years, triggering a Type Ia supernova (SN Ia) event. This finding supports the double-degenerate, super-Chandrasekhar evolutionary channel for the formation of SNe Ia.
Caption: Artist illustration of the central core of the planetary nebula Henize 2-428. Stars are not to scale. Credit: Gabriel Pérez, SMM (IAC).
Advertised on
References
It may interest you
-
The solar corona—the outermost layer of the Sun’s atmosphere—is extremely hot and very low in density. One of the main challenges in solar physics is understanding why the corona reaches temperatures of over a million degrees. This heating is believed to be closely related to the Sun’s magnetic field. However, quantifying the coronal magnetic field is difficult because the light emitted by the corona is extremely faint, and its polarization signals, which encode the information on the magnetic field, are subtle. Thanks to recent advances in technology, telescopes like the Daniel K. InouyeAdvertised on -
O ne of the key challenges in astronomy is to measure accurate distances to celestial objects. Knowing distances is crucial since it allows us to measure physical properties such as size, mass and luminosity. Since we can’t go out and use a tape-measure, a range of different approaches have been developed. Many of these approaches rely on using “standard candles”. Standard candles are objects (for example stars or supernovae) for which we know their intrinsic ”true” brightness. Once we know this, then their observed brightness compared to their intrinsic brightness gives us a distance to theAdvertised on -
Recent observational studies suggest that feedback from active galactic nuclei (AGNs)—the energetic centres powered by supermassive black holes—may play an important role in the formation and evolution of dwarf galaxies, contrary to the standard thought. We investigated this using two sets of 12 cosmological magnetohydrodynamic simulations of the formation of dwarf galaxies: one set using a version of the AURIGA galaxy formation physics model including AGN feedback and a parallel set with AGN feedback turned off. Our results reveal that AGNs can suppress the star formation (SF) of dwarfAdvertised on