The planetary nebula (PN) stage is the ultimate fate of stars with mass 1 to 8 solar masses (M⊙). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as it expands during the Asymptotic Giant Branch (AGB) phase. The excess material ends up forming a common-envelope (CE) surrounding both stars. Drag forces would then result in the envelope being ejected into a bipolar PN whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and evolve towards the white dwarf (WD) stage are called double-degenerates. Here we report that Henize 2–428 has a double-degenerate core with a combined mass unambiguously above the Chandrasekhar limit of 1.4 M⊙. According to its short orbital period (4.2 hours) and total mass (1.76 M⊙), the system should merge in 700 million years, triggering a Type Ia supernova (SN Ia) event. This finding supports the double-degenerate, super-Chandrasekhar evolutionary channel for the formation of SNe Ia.
Caption: Artist illustration of the central core of the planetary nebula Henize 2-428. Stars are not to scale. Credit: Gabriel Pérez, SMM (IAC).
Advertised on
References
It may interest you
-
Understanding the magnetic field in the corona is key for explaining the fascinating physical processes occurring there. However, the extreme conditions in the outer solar atmosphere hamper the possibility of acquiring observations with enough quality to infer the coronal magnetic field. Analyzing observations of overdensities of cold plasma supported by coronal magnetic fields, including filaments and prominences, allows us to understand such magnetic fields and their interaction with plasma. In this study, we have analyzed an active region prominence, a type of prominence that has barelyAdvertised on
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on
-
Ultra-diffuse galaxies, an extreme type of dwarf galaxy, have been the focus of extensive observational and theoretical studies over the past decade. With stellar masses comparable to dwarf galaxies (between 10 7 and 10 9 solar masses) but much larger in size (as defined by their effective radius), they exhibit an extremely low surface brightness. These galaxies display highly diverse properties: some have large dark matter halos, others lack them, and their number of globular clusters varies widely. Studies of their kinematics and stellar populations have shown that these extreme galaxiesAdvertised on