There is increasing evidence that single-star evolutionary models are unable to reproduce all of the observational properties of massive stars. Binary interaction has emerged as a key factor in the evolution of a significant fraction of massive stars. In this study, we investigate the helium (Y(He)) and nitrogen surface abundances in a comprehensive sample of 180 Galactic O-type stars with projected rotational velocities of ≤150 km/s. We found a subsample (~20% of the total, and ~80% of the stars with Y(He) ≥ 0.12) with a Y(He) and nitrogen abundance combined pattern that is unexplainable by
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretion
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxy