The best spectrographs are limited in stability by their calibration light source. Laser frequency combs are the ideal calibrators for astronomical spectrographs. They emit a spectrum of lines that are equally spaced in frequency and that are as accurate and stable as the atomic clock relative to which the comb is stabilized. Absolute calibration provides the radial velocity of an astronomical object relative to the observer (on Earth). For the detection of Earth-mass exoplanets in Earth-like orbits around solar-type stars, or of cosmic acceleration, the observable is a tiny velocity change of less than 10 cm s-1, where the repeatability of the calibration – the variation in stability across observations – is important. Hitherto, only laboratory systems or spectrograph calibrations of limited performance have been demonstrated. Here we report the calibration of an astronomical spectrograph with a short-term Doppler shift repeatability of 2.5 cm s-1, and use it to monitor the star HD75289 and recompute the orbit of its planet. This repeatability should make it possible to detect Earth-like planets in the habitable zone of star or even to measure the cosmic acceleration directly.
It may interest you
-
Red dwarfs are the most common stars in the galaxy. In recent years they have become key targets in the search for exoplanets. These stars are usually accompanied by rocky planets and due to their low brightness, their habitable zone is close to the star, making it easier to find planets that are within it. GJ 1002 is a red dwarf just one-eighth the mass of the Sun, located only 15.8 light-years away. Using radial velocity measurements from the ESPRESSO and CARMENES spectrographs, we have discovered the presence of two Earth-like and potentially habitable planets. The planets, GJ 1002 b and
Advertised on -
The standard cosmological model states that massive galaxies contain a large fraction of dark matter. Dark matter is a transparent substance that does not interact through regular baryonic matter and is only detected through its gravitational pull over the stars and the gas. NGC 1277 is known as the prototype of a relic galaxy, that is, a galaxy that has not accreted other galaxies since it formed. Relic galaxies are extremely rare and are the untouched remains of the giant galaxies that populated the early Universe. Since relic galaxies are very important to understand the conditions in the
Advertised on -
The amount and complexity of data delivered by modern galaxy surveys has been steadily increasing over the past years. New facilities will soon provide imaging and spectra of hundreds of millions of galaxies. Extracting coherent scientific information from these large and multi-modal data sets remains an open issue for the community and data-driven approaches such as deep learning have rapidly emerged as a potentially powerful solution to some long lasting challenges. This enthusiasm is reflected in an unprecedented exponential growth of publications using neural networks, which have gone
Advertised on