Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
Científicos del IAC publican en Nature Astronomy una guía práctica para mejorar propuestas y solicitudesAdvertised on -
The Instituto de Astrofísica de Canarias (IAC) today held the 16th edition of the ‘Our Science Day’, an annual internal event which brought together its research and technical staff at the IACTEC headquarters in La Laguna. This meeting has established itself as a space for sharing the most outstanding advances of the past year in the different areas of work of the centre, promoting collaboration, cohesion and the exchange of ideas between teams. The conference was opened by the director of the IAC, Valentín Martínez Pillet, who presented an analysis of the centre's situation. The directorAdvertised on -
Research on the formation, origin, and evolution of the dichotomy between the thin and thick disk components of the Milky Way has been a major topic of study, as it is key to understanding how our Galaxy formed. However, this is not an easy task, since populations defined by their morphology or kinematics show a mixture of chemically distinct stellar populations. Age therefore becomes a fundamental parameter for understanding the evolution of the Galactic disk. Our goal is to derive the age and metallicity distributions of the thin and thick disks defined kinematically, in order to revealAdvertised on