Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
The first batch of data from the Dark Energy Spectroscopic Instrument is now available for researchers to mine. Taken during the experiment’s “survey validation” phase, the data include distant galaxies and quasars as well as Milky Way stars. The universe is big, and it’s getting bigger. To study dark energy, the mysterious force behind the accelerating expansion of our universe, scientists are using the Dark Energy Spectroscopic Instrument (DESI) to map more than 40 million galaxies, quasars, and stars. Today, the collaboration, which includes the Instituto de Astrofísica de Canarias (IAC)
Advertised on -
The first data show there were at least two, and possibly three, more unseen stars that crafted the oblong, curvy shapes of the Southern Ring Nebula. In addition, for the first time, combining infrared images from James Webb Space Telescope (JWST) with existing data from ESA’s (European Space Agency’s) Gaia observatory, researchers were able to determine the precise mass of the central star before the nebula was formed. In this study, led by Macquarie University in Sydney (Australia), around 70 researchers have participated, among them scientists from the Instituto de Astrofísica de Canarias
Advertised on -
Scientists have discovered a new ring system around a dwarf planet on the edge of the Solar System. The ring system orbits much further out than is typical for other ring systems, calling into question current theories of how ring systems are formed. The discovery, published in Nature, was made possible thanks to the HiPERCAM instrument on the Gran Telescopio Canarias (GTC) at the Roque de los Muchachos Observatory in La Palma. A system of rings has been discovered around the dwarf planet Quaoar which is approximately half the size of Pluto and orbits the Sun beyond Neptune. The discovery
Advertised on