Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
An international team, led by a researcher from the University of Liège (Belgium) affiliated to the Instituto de Astrofísica de Canarias (IAC), has discovered an extraordinarily light planet orbiting a distant star in our galaxy. This discovery, reported today in the journal Nature Astronomy, is a promising key to solving the mystery of how such giant, super-light planets form. The new planet, named WASP-193b, appears to dwarf Jupiter in size, yet it is a fraction of its density. The scientists found that the gas giant is 50 percent bigger than Jupiter, and about a tenth as dense — anAdvertised on
-
The European Space Agency’s Euclid mission released its first batch of survey data, including a preview of its deep fields. Using Artificial Intelligence (AI) algorithms in combination with citizen science campaigns, the Euclid Consortium scientific results include the discovery of strong gravitational lensing systems, the exploration of galaxy clusters and the cosmic web, the characterisation of active galactic nuclei (AGN) and quasars, studies on galaxy evolution and morphology, and the identification of numerous dwarf galaxies and transients. Spain has an important role in the EuclidAdvertised on
-
An international study led by Almudena Prieto, a researcher at the Instituto de Astrofísica de Canarias (IAC) has found places where new stars are forming, as faint star clusters, around the centre of an evolved galaxy. This is the first time that young populations of stars have been picked out and dated in this type of galaxies dominated by very old stars, which can be called “rejuvenated old galaxies”. The research has combined observations from various telescopes, both ground based and space based, and has used innovative techniques of data analysis. The results are published in theAdvertised on