Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
International research, led by the Instituto de Astrofísica e Ciências do Espaço (IA) and with the participation of the the Instituto de Astrofísica de Canarias (IAC), has confirmed the discovery of five exoplanets in the same planetary system, two of them similar to Mercury. The finding provides clues about how these unusual, very high-density planets form. The study is published today in the journal Astronomy & Astrophysics. An international science team has found a system orbiting the cool star HD 23472 with three super-Earths and two super-Mercuries. "We wanted to observe this planetary
Advertised on -
In this work we discuss and confront recent results on metallicity variations in the local interstellar medium, obtained from observations of H II regions by our group and neutral clouds (from literature) of the Galactic thin disk, and compare them with recent high-quality metallicity determinations of other tracers of the chemical composition of the interstellar medium as B-type stars, classical Cepheids, and young clusters. We find that the metallicity variations obtained for these last kinds of objects are consistent with each other and with that obtained for H II regions but
Advertised on -
Almost a decade after starting observations of the sky in the northern hemisphere, the QUIJOTE Collaboration has presented an initial series of 6 scientific articles, giving the most accurate description we have of the polarization of the emission of the Milky Way in the microwave range. This is a window of observation not previously explored, which provides complementary information to that obtained previously by space missions (Planck and WMAP) dedicated to the study of the cosmic microwave background radiation (CMB), the fossil radiation left behind by the Big Bang. The new results allow
Advertised on