In August 2006 a new planetary transit was discovered from data from the TrES network. The discovery was confirmed using radial velocity curves obtained with the Keck and characterised with light curves in different filters obtained using two telescopes at the Observatorio del Teide: "IAC80" and "TELAST" (the first result of scientific interest obtained from the latter). The planet discovered, TrES-2, is more massive and somewhat larger than its quasi-homonym TrES-1 (the first exoplanet discovered using the transit method), and follows the expected patterns for this type of object. Its main importance is that it is the first object discovered in the area of observation of the future Kepler satellite, which will be able to track it in a degree of detail never before achieved.
Light curves of TRES_2 obtained using telescopes of the network and with two telescopes from the Observatorio del Teide: "IAC-80" and "TELAST" with different filters.
Advertised on
It may interest you
-
Observations made with the James Webb Space Telescope (JWST) have revealed a larger-than-expected number of massive galaxies when the Universe was still young. The focus of this study is precisely one of these galaxies, ZF-UDS-7329. It is a very compact object, and its spectrum suggests that it formed at a very early stage, when the Universe was around 2 billion years old. According to theoretical predictions, these objects first formed a generation of stars at the center of their dark matter halos and subsequently grew by merging with other halos. However, due to the random nature of theseAdvertised on
-
Light bridges are elongated and bright structures protruding into the umbra of sunspots. The presence of light bridges has a significant role in the evolution of sunspots and the heating of their overlying atmosphere. Therefore, investigating these structures is crucial to understanding fundamental aspects of sunspots. By applying a novel code based on deep-learning algorithms called SICON to spectropolarimetric observations acquired with the Hinode satellite, we computed atmospheric parameters that allowed us to infer the variation of the physical properties of light bridges on a geometricAdvertised on
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on