Bibcode
                                    
                            Torres, M. A. P.; Casares, J.; Jiménez-Ibarra, F.; Álvarez-Hernández, A.; Muñoz-Darias, T.; Armas Padilla, M.; Jonker, P. G.; Heida, M.
    Bibliographical reference
                                    The Astrophysical Journal
Advertised on:
    
                        4
            
                        2020
            
  Journal
                                    
                            Citations
                                    106
                            Refereed citations
                                    100
                            Description
                                    We present intermediate-resolution spectroscopy of the optical counterpart to the black hole X-ray transient MAXI J1820+070 (=ASASSN-18ey) obtained with the OSIRIS spectrograph on the 10.4 m Gran Telescopio Canarias. The observations were performed with the source close to the quiescent state and before the onset of renewed activity in 2019 August. We make use of these data and K-type dwarf templates taken with the same instrumental configuration to measure the projected rotational velocity of the donor star. We find vrot sin i = 84 ± 5 km s-1 (1σ), which implies a donor to the black hole mass ratio   for the case of a tidally locked and Roche-lobe filling donor star. The derived dynamical masses for the stellar components are   and  . The use of q, combined with estimates of the accretion disk size at the time of the optical spectroscopy, allows us to revise our previous orbital inclination constraints to 66° < i < 81°. These values lead to 95% confidence level limits on the masses of 5.73 < M1(M⊙) < 8.34 and 0.28 < M2(M⊙) < 0.77. Adopting instead the 63° ± 3° orientation angle of the radio jet as the binary inclination leads to   and   (1σ).
                            Related projects
                
Black holes, neutron stars, white dwarfs and their local environment
            
    Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
            
            Montserrat
            
                        Armas Padilla