The deep OB star population in Carina from the VST Photometric Hα Survey (VPHAS+)

Mohr-Smith, M.; Drew, J. E.; Napiwotzki, R.; Simón-Díaz, S.; Wright, N. J.; Barentsen, G.; Eislöffel, J.; Farnhill, H. J.; Greimel, R.; Monguió, M.; Kalari, V.; Parker, Q. A.; Vink, J. S.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 2, p.1807-1830

Advertised on:
Number of authors
IAC number of authors
Refereed citations
Massive OB stars are critical to the ecology of galaxies and yet our knowledge of OB stars in the Milky Way, fainter than V ˜ 12, remains patchy. Data from the VST Photometric Hα Survey (VPHAS+) permit the construction of the first deep catalogues of blue excess-selected OB stars, without neglecting the stellar field. A total of 14 900 candidates with 2MASS cross-matches are blue-selected from a 42 deg2 region in the Galactic plane, capturing the Carina Arm over the Galactic longitude range 282° ≲ ℓ ≲ 293°. Spectral energy distribution fitting is performed on these candidates' combined VPHAS+ u, g, r, i and 2MASS J, H, K magnitudes. This delivers effective temperature constraints, statistically separating O from early-B stars and high-quality extinction parameters, A0 and RV (random errors typically ˜0.1). The high-confidence O-B2 candidates number 5915 and a further 5170 fit to later B spectral type. Spectroscopy of 276 of the former confirms 97 per cent of them. The fraction of emission-line stars among all candidate B stars is 7-8 per cent. Greyer (RV > 3.5) extinction laws are ubiquitous in the region, over the distance range 2.5-3 to ˜10 kpc. Near prominent massive clusters, RV tends to rise, with particularly large and chaotic excursions to RV ˜ 5 seen in the Carina Nebula. The data reveal a hitherto unnoticed association of 108 O-B2 stars around the O5If+ star LSS 2063 (ℓ = 289.77°, b = -1.22°). Treating the OB star scaleheight as a constant within the thin disc, we find an orderly mean relation between extinction (A0) and distance in the Galactic longitude range, 287.6° <ℓ < 293.5°, and infer the subtle onset of thin-disc warping. A halo around NGC 3603, roughly a degree in diameter, of ˜500 O-B2 stars with 4 < A0(mag) < 7 is noted.
Related projects
The IACOB project: A new Era in the Study of Galactic OB Stars

IACOB is an ambitious long-term project whose main scientific goal is to provide an unprecedented empirical overview of the main physical properties of Galactic massive O- and B-type stars which can be used as definitive anchor point for our theories of stellar atmospheres, winds, interiors and evolution of massive stars

Simón Díaz