An Extreme Protocluster of Luminous Dusty Starbursts in the Early Universe

Oteo, I.; Ivison, R. J.; Dunne, L.; Manilla-Robles, A.; Maddox, S.; Lewis, A. J. R.; de Zotti, G.; Bremer, M.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Greenslade, J.; Omont, A.; Perez–Fournón, I.; Riechers, D.; Scott, D.; van der Werf, P.; Weiss, A.; Zhang, Z.-Y.
Bibliographical reference

The Astrophysical Journal, Volume 856, Issue 1, article id. 72, 12 pp. (2018).

Advertised on:
3
2018
Number of authors
20
IAC number of authors
2
Citations
141
Refereed citations
122
Description
We report the identification of an extreme protocluster of galaxies in the early universe whose core (nicknamed Distant Red Core, DRC, because of its very red color in Herschel SPIRE bands) is formed by at least 10 dusty star-forming galaxies (DSFGs), spectroscopically confirmed to lie at {z}spec}=4.002 via detection of [C I](1–0), 12CO(6–5), 12CO(4–3), 12CO(2–1), and {{{H}}}2{{O}}({2}11{--}{2}02) emission lines with ALMA and ATCA. These DSFGs are distributed over a 260 {kpc}× 310 {kpc} region and have a collective obscured star formation rate (SFR) of ∼ 6500 {M}ȯ {yr}}-1, considerably higher than those seen before in any protocluster at z≳ 4. Most of the star formation is taking place in luminous DSFGs since no Lyα emitters are detected in the protocluster core, apart from a Lyα blob located next to one of the DRC components, extending over 60 {kpc}. The total obscured SFR of the protocluster could rise to {SFR}∼ {{14,400}} {M}ȯ {yr}}-1 if all the members of an overdensity of bright DSFGs discovered around DRC in a wide-field Large APEX BOlometer CAmera 870 μm image are part of the same structure. [C I](1–0) emission reveals that DRC has a total molecular gas mass of at least {M}{{{H}}2}∼ 6.6× {10}11 {M}ȯ , and its total halo mass could be as high as ∼ 4.4× {10}13 {M}ȯ , indicating that it is the likely progenitor of a cluster at least as massive as Coma at z = 0.
Related projects
Project Image
Formation and Evolution of Galaxies: Observations in Infrared and other Wavelengths

This IAC research group carries out several extragalactic projects in different spectral ranges, using space as well as ground-based telescopes, to study the cosmological evolution of galaxies and the origin of nuclear activity in active galaxies. The group is a member of the international consortium which built the SPIRE instrument for the

Ismael
Pérez Fournon
Galaxy proto-cluster
Molecular Gas and Dust in Galaxies Across Cosmic Time

Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of

Helmut
Dannerbauer