Fingerprints of stellar populations in the near-infrared: an optimized set of spectral indices in the JHK bands 0

Eftekhari, Elham; Vazdekis, Alexandre; La Barbera, Francesco
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
6
2021
Number of authors
3
IAC number of authors
2
Citations
4
Refereed citations
4
Description
Stellar population studies provide unique clues to constrain galaxy formation models. So far, detailed studies based on absorption line strengths have mainly focused on the optical spectral range although many diagnostic features are present in other spectral windows. In particular, the near-infrared (NIR) can provide a wealth of information about stars, such as evolved giants, that have less evident optical signatures. Due to significant advances in NIR instrumentation and extension of spectral libraries and stellar population synthesis (SPS) models to this domain, it is now possible to perform in-depth studies of spectral features in the NIR to a high level of precision. In this work, taking advantage of state-of-the-art SPS models covering the NIR spectral range, we introduce a new set of NIR indices constructed to be maximally sensitive to the main stellar population parameters, namely age, metallicity, and initial mass function (IMF). We fully characterize the new indices against these parameters as well as their sensitivity to individual elemental abundance variations, velocity dispersion broadening, wavelength shifts, signal-to-noise ratio, and flux calibration. We also present, for the first time, a method to ensure that the analysis of spectral indices is not affected by sky contamination, which is a major challenge when dealing with NIR spectroscopy. Moreover, we discuss two main applications: (i) the ability of some NIR spectral indices to constrain the shape of the low-mass IMF and (ii) current issues in the analysis of NIR spectral indices for future developments of SPS modelling.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Ignacio
Martín Navarro