Globular clusters in modified Newtonian dynamics: velocity dispersion profiles from self-consistent models

Sollima, A.; Nipoti, C.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 401, Issue 1, pp. 131-142.

Advertised on:
1
2010
Number of authors
2
IAC number of authors
1
Citations
31
Refereed citations
28
Description
We test the modified Newtonian dynamics (MOND) theory with the velocity dispersion profiles of Galactic globular clusters populating the outermost region of the Milky Way halo, where the Galactic acceleration is lower than the characteristic MOND acceleration a0. For this purpose, we constructed self-consistent, spherical models of stellar systems in MOND, which are the analogues of the Newtonian King models. The models are spatially limited, reproduce well the surface brightness profiles of globular clusters and have velocity dispersion profiles that differ remarkably in shape from the corresponding Newtonian models. We present dynamical models of six globular clusters, which can be used to efficiently test MOND with the available observing facilities. A comparison with recent spectroscopic data obtained for NGC2419 suggests that the kinematics of this cluster might be hard to explain in MOND.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Ignacio
Martín Navarro