An HST/WFPC2 survey of bright young clusters in M 31. IV. Age and mass estimates

Perina, S.; Cohen, J. G.; Barmby, P.; Beasley, M. A.; Bellazzini, M.; Brodie, J. P.; Federici, L.; Fusi Pecci, F.; Galleti, S.; Hodge, P. W.; Huchra, J. P.; Kissler-Patig, M.; Puzia, T. H.; Strader, J.
Bibliographical reference

Astronomy and Astrophysics, Volume 511, id.A23

Advertised on:
2
2010
Number of authors
14
IAC number of authors
1
Citations
28
Refereed citations
27
Description
Aims: We present the main results of an imaging survey of possible young massive clusters (YMC) in M 31 performed with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST), with the aim of estimating their age and their mass. We obtained shallow (to B ˜ 25) photometry of individual stars in 19 clusters (of the 20 targets of the survey). We present the images and color magnitude diagrams (CMDs) of all of our targets. Methods: Point spread function fitting photometry of individual stars was obtained for all the WFPC2 images of the target clusters, and the completeness of the final samples was estimated using extensive sets of artificial stars experiments. The reddening, age, and metallicity of the clusters were estimated by comparing the observed CMDs and luminosity functions (LFs) with theoretical models. Stellar masses were estimated by comparison with theoretical models in the log(Age) vs. absolute integrated magnitude plane, using ages estimated from our CMDs and integrated J, H, K magnitudes from 2MASS-6X. Results: Nineteen of the twenty surveyed candidates were confirmed to be real star clusters, while one turned out to be a bright star. Three of the clusters were found not to be good YMC candidates from newly available integrated spectroscopy and were in fact found to be old from their CMD. Of the remaining sixteen clusters, fourteen have ages between 25 Myr and 280 Myr, two have older ages than 500 Myr (lower limits). By including ten other YMC with HST photometry from the literature, we assembled a sample of 25 clusters younger than 1 Gyr, with mass ranging from 0.6× 10^4 Msun to 6× 10^4 Msun, with an average of ˜3× 10^4 Msun. Our estimates of ages and masses well agree with recent independent studies based on integrated spectra. Conclusions: The clusters considered here are confirmed to have masses significantly higher than Galactic open clusters (OC) in the same age range. Our analysis indicates that YMCs are relatively common in all the largest star-forming galaxies of the Local Group, while the lack of known YMC older than 20 Myr in the Milky Way may stem from selection effects. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-10818 [P.I.: J.G. Cohen].Plaskett Fellow.Hubble Fellow.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Ignacio
Martín Navarro