Introducing the LBT Imaging of Galactic Halos and Tidal Structures (LIGHTS) survey. A preview of the low surface brightness Universe to be unveiled by LSST

Trujillo, Ignacio; D'Onofrio, Mauro; Zaritsky, Dennis; Madrigal-Aguado, Alberto; Chamba, Nushkia; Golini, Giulia; Akhlaghi, Mohammad; Sharbaf, Zahra; Infante-Sainz, Raúl; Román, Javier; Morales-Socorro, Carlos; Sand, David J.; Martin, Garreth
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
We present the first results of the LBT Imaging of Galaxy Haloes and Tidal Structures (LIGHTS) survey. LIGHTS is an ongoing observational campaign with the 2 × 8.4 m Large Binocular Telescope (LBT) aiming to explore the stellar haloes and the low surface brightness population of satellites down to a depth of μV ∼ 31 mag arcsec−2 (3σ in 10″ × 10″ boxes) of nearby galaxies. We simultaneously collected deep imaging in the g and r Sloan filters using the Large Binocular Cameras. The resulting images are 60 times (i.e. ∼4.5 mag) deeper than those from the Sloan Digital Sky Survey, and they have characteristics comparable (in depth and spatial resolution) to the ones expected from the future Legacy Survey of Space and Time (LSST). Here we show the first results of our pilot programme targeting NGC 1042 (an M 33 analogue at a distance of 13.5 Mpc) and its surroundings. The depth of the images allowed us to detect an asymmetric stellar halo in the outskirts of this galaxy whose mass (1.4 ± 0.4 × 108 M⊙) is in agreement with the ΛCDM expectations. Additionally, we show that deep imaging from the LBT reveals low mass satellites (a few times 105 M⊙) with very faint central surface brightness μV(0) ∼ 27 mag arcsec−2 (i.e. similar to Local Group dwarf spheroidals, such as Andromeda XIV or Sextans, but at distances well beyond the local volume). The depth and spatial resolution provided by the LIGHTS survey open up a unique opportunity to explore the `missing satellites' problem in a large variety of galaxies beyond our Local Group down to masses where the difference between the theory and observation (if any) should be significant.

The reduced images are also available at the CDS via anonymous ftp to ( or via
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Martín Navarro
Project Image
Spiral Galaxies: Evolution and Consequences

Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of

Johan Hendrik
Knapen Koelstra