Jointly super-resolved and optically sectioned Bayesian reconstruction method for structured illumination microscopy

Yann Lai-Tim; Laurent M. Mugnier; François Orieux; Roberto Baena-Gallé; Michel Paques; Serge Meimon
Bibliographical reference

Optics Express

Advertised on:
11
2019
Journal
Number of authors
6
IAC number of authors
1
Refereed citations
0
Description
Structured Illumination Microscopy (SIM) is an imaging technique for achieving both super-resolution (SR) and optical sectioning (OS) in wide-field microscopy. It consists in illuminating the sample with periodic patterns at different orientations and positions. The resulting images are then processed to reconstruct the observed object with SR and/or OS. In this work, we present BOSSA-SIM, a general-purpose SIM reconstruction method, applicable to moving objects such as encountered in in vivo retinal imaging, that enables SR and OS jointly in a fully unsupervised Bayesian framework. By modeling a 2-layer object composed of an in-focus layer and a defocused layer, we show that BOSSA-SIM is able to jointly reconstruct them so as to get a super-resolved and optically sectioned in-focus layer. The achieved performance, assessed quantitatively by simulations for several noise levels, compares favorably with a state-of-the-art method. Finally, we validate our method on open-access experimental microscopy data.
Related projects
Project Image
Spiral Galaxies: Evolution and Consequences

Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of

Johan Hendrik
Knapen Koelstra