Low-amplitude rotational modulation rather than pulsations in the CoRoT B-type supergiant HD 46769

Aerts, C.; Simón-Díaz, S.; Catala, C.; Neiner, C.; Briquet, M.; Castro, N.; Schmid, V. S.; Scardia, M.; Rainer, M.; Poretti, E.; Pápics, P. I.; Degroote, P.; Bloemen, S.; Østensen, R. H.; Auvergne, M.; Baglin, A.; Baudin, F.; Michel, E.; Samadi, R.
Bibliographical reference

Astronomy and Astrophysics, Volume 557, id.A114, 9 pp.

Advertised on:
9
2013
Number of authors
19
IAC number of authors
1
Citations
15
Refereed citations
12
Description
Aims: We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD 46769 (V = 5.79). We also attempt to detect a magnetic field in the target. Methods: We analyse a 23-day oversampled CoRoT light curve after detrending and spectroscopic follow-up data using standard Fourier analysis and phase dispersion minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assuming a dipole field. Results: In the CoRoT data, we detect a dominant period of 4.84 d with an amplitude of 87 ppm and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69 d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72 ± 2 km s-1 and does not reveal periodic variability or the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than ~500 G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar. Conclusions: The absence of pulsations and macroturbulence of this evolved B-type supergiant is placed into the context of instability computations and of observed variability of evolved B-type stars. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6 m telescope, under programme LP185.D-0056. Based on observations obtained with the HERMES spectrograph attached to the 1.2 m Mercator telescope, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientific (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany. Based on observations obtained with the Narval spectropolarimeter at the Observatoire du Pic du Midi (France), which is operated by the Institut National des Sciences de l'Univers (INSU).
Related projects
Projets' image
Physical properties and evolution of Massive Stars

This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to

Sergio
Simón Díaz