MEGARA, the R=6000-20000 IFU and MOS of GTC

Carrasco, E.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.; García Vargas, M. L.; Arrillaga, X.; Avilés, J. L.; Bouquin, A.; Carbajo, J. et al.
Bibliographical reference

Proceedings of the SPIE, Volume 10702, id. 1070216 21 pp. (2018).

Advertised on:
MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin2. In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated.
Related projects
Project Image
Starbursts in Galaxies GEFE

Starsbursts play a key role in the cosmic evolution of galaxies, and thus in the star formation (SF) history of the universe, the production of metals, and the feedback coupling galaxies with the cosmic web. Extreme SF conditions prevail early on during the formation of the first stars and galaxies, therefore, the starburst phenomenon constitutes a

Muñoz Tuñón
Project Image
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

Understanding the formation and evolution of galaxies is one of the key challenges of modern astronomy. Exquisitely detailed analyses of nearby and distant galaxies is now possible with the increasing amount of observational data coming from large facilities. Quality spectroscopic data is also becoming more common for galaxies up to and beyond z ~