Stellar masses of giant clumps in CANDELS and simulated galaxies using machine learning

Huertas-Company, Marc; Guo, Yicheng; Ginzburg, Omri; Lee, Christoph T.; Mandelker, Nir; Metter, Maxwell; Primack, Joel R.; Dekel, Avishai; Ceverino, Daniel; Faber, Sandra M.; Koo, David C.; Koekemoer, Anton; Snyder, Gregory; Giavalisco, Mauro; Zhang, Haowen
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
9
2020
Number of authors
15
IAC number of authors
1
Citations
33
Refereed citations
26
Description
A significant fraction of high redshift star-forming disc galaxies are known to host giant clumps, whose nature and role in galaxy evolution are yet to be understood. In this work, we first present a new method based on neural networks to detect clumps in galaxy images. We use this method to detect clumps in the rest-frame optical and UV images of a complete sample of ∼1500 star forming galaxies at 1 < z < 3 in the CANDELS survey as well as in images from the VELA zoom-in cosmological simulations. We show that observational effects have a dramatic impact on the derived clump properties leading to an overestimation of the clump mass up to a factor of 10, which highlights the importance of fair comparisons between observations and simulations and the limitations of current HST data to study the resolved structure of distant galaxies. After correcting for these effects with a mixture density network, we estimate that the clump stellar mass function follows a power law down to the completeness limit (107 solar masses) with the majority of the clumps being less massive than 109 solar masses. This is in better agreement with recent gravitational lensing based measurements. The simulations explored in this work overall reproduce the shape of the observed clump stellar mass function and clumpy fractions when confronted under the same conditions, although they tend to lie in the lower limit of the confidence intervals of the observations. This agreement suggests that most of the observed clumps are formed in situ.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology

We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.

Ignacio
Martín Navarro