Munday, James; Pakmor, Ruediger; Pelisoli, Ingrid; Jones, David; Sahu, Snehalata; Tremblay, Pier-Emmanuel; Rajamuthukumar, Abinaya Swaruba; Nelemans, Gijs; Magee, Mark; Toonen, Silvia; Bédard, Antoine; Cunningham, Tim
Bibliographical reference
Nature Astronomy
Advertised on:
6
2025
Citations
8
Refereed citations
4
Description
Double white dwarf binaries are a leading explanation of the origin of type Ia supernovae, but no system exceeding the Chandrasekhar mass limit (1.4 M⊙) has been found that will explode anywhere close to a Hubble time. Here we present the super-Chandrasekhar mass double white dwarf WDJ181058.67+311940.94 whose merger time (22.6 ± 1.0 Gyr) is of the same order as a Hubble time. The mass of the binary is large, combining to 1.555 ± 0.044 M⊙, while being located only 49 pc away. We predict that the binary will explode dynamically by means of a double detonation that will destroy both stars just before they merge, appearing as a subluminous type Ia supernova with a peak apparent magnitude of about mV = −16 (200,000 times brighter than Jupiter). The observationally derived birth rate of super-Chandrasekhar mass double white dwarfs is now at least 6.0 × 10−4 yr−1 and the observed rate of type Ia supernovae in the Milky Way from such systems is approximately 4.4 × 10−5 yr−1, whereas the predicted type Ia supernova rate in the Milky Way from all progenitor channels is about sixty times larger. Hence, WDJ181058.67+311940.94 mitigates the observed deficit of massive double white dwarfs witnessed in volume-complete populations, but further evidence is required to determine the majority progenitors of type Ia supernovae.
Related projects
Physics of Ionized Nebulae
The research that is being carried out by the group can be condensed into two main lines: 1) Study of the structure, dynamics, physical conditions and chemical evolution of Galactic and extragalactic ionized nebulae through detailed analysis and modelization of their spectra. Investigation of chemical composition gradients along the disk of our
Jorge
García Rojas